On sufficient conditions for the stability of dynamic interval systems
A Lur’e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur’e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based on results...
A Lur'e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur'e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based on...
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law...
We study the dynamic behavior and stability of two connected Rayleigh beams that are subject to, in addition to two sensors and two actuators applied at the joint point, one of the actuators also specially distributed along the beams. We show that with the distributed control employed, there is a set of generalized eigenfunctions of the closed-loop system, which forms a Riesz basis with parenthesis for the state space. Then both the spectrum-determined growth condition and exponential stability...
In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number. The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions. Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number below unity....
Let be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...
Let be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke's generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...
In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...
Global stability of Takagi-Sugeno (T-S) fuzzy model is presented. First, stability conditions for T-S fuzzy model presented by Tanaka and Sugeno are reviewed. Second, new theorems for the stability of the general form of T-S model is derived in the sense of Lyapunov.The T-S model we studied includes a linear equation with a constant parameter in the consequent part of each rule while other authors have analyzed the model with no constant term, which does not represent a real system. This in turn...