Displaying 41 – 60 of 96

Showing per page

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law...

On the dynamic behavior and stability of controlled connected Rayleigh beams under pointwise output feedback

Bao-Zhu Guo, Jun-Min Wang, Cui-Lian Zhou (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study the dynamic behavior and stability of two connected Rayleigh beams that are subject to, in addition to two sensors and two actuators applied at the joint point, one of the actuators also specially distributed along the beams. We show that with the distributed control employed, there is a set of generalized eigenfunctions of the closed-loop system, which forms a Riesz basis with parenthesis for the state space. Then both the spectrum-determined growth condition and exponential stability...

On the dynamics of a vaccination model with multiple transmission ways

Shu Liao, Weiming Yang (2013)

International Journal of Applied Mathematics and Computer Science

In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number. The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions. Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number below unity....

On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...

On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke's generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...

On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems

Mehdi Badra, Takéo Takahashi (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...

On the global dynamics of the cancer AIDS-related mathematical model

Konstantin E. Starkov, Corina Plata-Ante (2014)

Kybernetika

In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...

On the global stability of Takagi-Sugeno general model.

Fernando Matía, Basil M. Al-Hadithi, Agustín Jiménez (1999)

Mathware and Soft Computing

Global stability of Takagi-Sugeno (T-S) fuzzy model is presented. First, stability conditions for T-S fuzzy model presented by Tanaka and Sugeno are reviewed. Second, new theorems for the stability of the general form of T-S model is derived in the sense of Lyapunov.The T-S model we studied includes a linear equation with a constant parameter in the consequent part of each rule while other authors have analyzed the model with no constant term, which does not represent a real system. This in turn...

On the L p -stabilization of the double integrator subject to input saturation

Yacine Chitour (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a finite-dimensional control system ( Σ ) x ˙ ( t ) = f ( x ( t ) , u ( t ) ) , such that there exists a feedback stabilizer k that renders x ˙ = f ( x , k ( x ) ) globally asymptotically stable. Moreover, for ( H , p , q ) with H an output map and 1 p q , we assume that there exists a 𝒦 -function α such that H ( x u ) q α ( u p ) , where x u is the maximal solution of ( Σ ) k x ˙ ( t ) = f ( x ( t ) , k ( x ( t ) ) + u ( t ) ) , corresponding to u and to the initial condition x ( 0 ) = 0 . Then, the gain function G ( H , p , q ) of ( H , p , q ) given by G ( H , p , q ) ( X ) = def sup u p = X H ( x u ) q , is well-defined. We call profile of k for ( H , p , q ) any 𝒦 -function which is of the same order of magnitude as G ( H , p , q ) . For the double integrator...

On the Lp-stabilization of the double integrator subject to input saturation

Yacine Chitour (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a finite-dimensional control system ( Σ ) x ˙ ( t ) = f ( x ( t ) , u ( t ) ) , such that there exists a feedback stabilizer k that renders x ˙ = f ( x , k ( x ) ) globally asymptotically stable. Moreover, for (H,p,q) with H an output map and 1 p q , we assume that there exists a 𝒦 -function α such that H ( x u ) q α ( u p ) , where xu is the maximal solution of ( Σ ) k x ˙ ( t ) = f ( x ( t ) , k ( x ( t ) ) + u ( t ) ) , corresponding to u and to the initial condition x(0)=0. Then, the gain function G ( H , p , q ) of (H,p,q) given by 14.5cm G ( H , p , q ) ( X ) = def sup u p = X H ( x u ) q , is well-defined. We call profile of k for (H,p,q) any 𝒦 -function which is of the same order of...

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

Currently displaying 41 – 60 of 96