Page 1

Displaying 1 – 2 of 2

Showing per page

Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing

Olga Drblíková (2007)

Kybernetika

This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient...

Universally typical sets for ergodic sources of multidimensional data

Tyll Krüger, Guido F. Montúfar, Ruedi Seiler, Rainer Siegmund-Schultze (2013)

Kybernetika

We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an h 0 with...

Currently displaying 1 – 2 of 2

Page 1