An algebraic approach to fix points of GOST-algorithm
In this paper, a hybrid regularizers model for Poissonian image restoration is introduced. We study existence and uniqueness of minimizer for this model. To solve the resulting minimization problem, we employ the alternating minimization method with rigorous convergence guarantee. Numerical results demonstrate the efficiency and stability of the proposed method for suppressing Poisson noise.
The main purpose of the paper is to present a statistical model-based iterative approach to the problem of image reconstruction from projections. This originally formulated reconstruction algorithm is based on a maximum likelihood method with an objective adjusted to the probability distribution of measured signals obtained from an x-ray computed tomograph with parallel beam geometry. Various forms of objectives are tested. Experimental results show that an objective that is exactly tailored statistically...
For a direct-sequence spread-spectrum (DS-SS) system we pose and solve the problem of maximum-likelihood (ML) sequence estimation in the presence of narrowband interference, using the expectation-maximization (EM) algorithm. It is seen that the iterative EM algorithm obtains at each iteration an estimate of the interference which is then subtracted from the data before a new sequence estimate is produced. Both uncoded and trellis coded systems are studied, and the EM-based algorithm is seen to perform...
The analysis of plant root system images plays an important role in the diagnosis of plant health state, the detection of possible diseases and growth distortions. This paper describes an initial stage of automatic analysis-the segmentation method for scanned images of Ni-treated wheat roots from hydroponic culture. The main roots of a wheat fibrous system are placed separately in the scanner view area on a high chroma background (blue or red). The first stage of the method includes the transformation...
With the aim to better preserve sharp edges and important structure features in the recovered image, this article researches an improved adaptive total variation regularization and H −1 norm fidelity based strategy for image decomposition and restoration. Computationally, for minimizing the proposed energy functional, we investigate an efficient numerical algorithm-the split Bregman method, and briefly prove its convergence. In addition, comparisons are also made with the classical OSV (Osher-Sole-Vese)...