Factorization Methods in Cryptosystems
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
This paper presents a survey of recent successful algorithms for blind separation of determined instantaneous linear mixtures of independent sources such as natural speech or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity, spectral diversity, or on a combination of them. Performance of the algorithms will be demonstrated on separation of a linear instantaneous mixture of audio signals (music, speech) and on artifact removal in electroencephalogram (EEG).
In this paper two recursive algorithms are proposed and compared as a solution of the least mean-squared error linear filtering problem of a wide-sense stationary scalar signal from uncertain observations perturbed by white and coloured additive noises. Considering that the state-space model of the signal is not available and that the variables modelling the uncertainty are not independent, the proposed algorithms are derived by using covariance information. The difference between both algorithms...
This paper is the first step in the solution of the problem of finite completion of comma-free codes. We show that every finite comma-free code is included in a finite comma-free code of particular kind, which we called, for lack of a better term, canonical comma-free code. Certainly, finite maximal comma-free codes are always canonical. The final step of the solution which consists in proving further that every canonical comma-free code is completed to a finite maximal comma-free code, is intended...
This paper is the first step in the solution of the problem of finite completion of comma-free codes. We show that every finite comma-free code is included in a finite comma-free code of particular kind, which we called, for lack of a better term, canonical comma-free code. Certainly, finite maximal comma-free codes are always canonical. The final step of the solution which consists in proving further that every canonical comma-free code is completed to a finite maximal comma-free code, is intended...
This paper is a sequel to an earlier paper of the present author, in which it was proved that every finite comma-free code is embedded into a so-called (finite) canonical comma-free code. In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite maximal comma-free code, which thus achieves the conclusion that every finite comma-free code has finite completions.
This paper is a sequel to an earlier paper of the present author, in which it was proved that every finite comma-free code is embedded into a so-called (finite) canonical comma-free code. In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite maximal comma-free code, which thus achieves the conclusion that every finite comma-free code has finite completions.
In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of...
In this article, we formalize integral linear spaces, that is a linear space with integer coefficients. Integral linear spaces are necessary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs short lattice base and cryptographic systems with lattice [8].
In this article, we formalize the Advanced Encryption Standard (AES). AES, which is the most widely used symmetric cryptosystem in the world, is a block cipher that was selected by the National Institute of Standards and Technology (NIST) as an official Federal Information Processing Standard for the United States in 2001 [12]. AES is the successor to DES [13], which was formerly the most widely used symmetric cryptosystem in the world. We formalize the AES algorithm according to [12]. We then verify...
In this article we formalize DES (the Data Encryption Standard), that was the most widely used symmetric cryptosystem in the world. DES is a block cipher which was selected by the National Bureau of Standards as an official Federal Information Processing Standard for the United States in 1976 [15].
The necessary and sufficient conditions are extracted for periodicity of bi-ideals. They cover infinitely and finitely generated bi-ideals.