Page 1

Displaying 1 – 10 of 10

Showing per page

Variantes sur un théorème de Candès, Romberg et Tao

Jean-Pierre Kahane (2013)

Annales de l’institut Fourier

Le théorème CRT dit comment reconstruire un signal à partir d’un échantillonnage de fréquences parcimonieux. L’hypothèse sur le signal, considéré comme porté par un groupe cyclique d’ordre N , est qu’il est porté par un petit nombre de points, s , et la méthode est de choisir aléatoirement C s log N fréquences et de minimiser dans l’algèbre de Wiener le prolongement à / N de la transformée de Fourier du signal réduite à ces fréquences. Quand C est grand, la probabilité de reconstruire le signal est voisine...

Variational approximation for detecting point-like target problems

Gilles Aubert, Daniele Graziani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to provide a rigorous variational formulation for the detection of points in 2-d biological images. To this purpose we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for which we prove the Γ-convergence to the initial one.

Variational approximation for detecting point-like target problems*

Gilles Aubert, Daniele Graziani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to provide a rigorous variational formulation for the detection of points in 2-d biological images. To this purpose we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for which we prove the Γ-convergence to the initial one.

Velocity and Entropy of Motion in Periodic Potentials

Andreas Knauf (1996/1997)

Séminaire Équations aux dérivées partielles

This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.

Violations of the Ingleton inequality and revising the four-atom conjecture

Nigel Boston, Ting-Ting Nan (2020)

Kybernetika

The entropy region is a fundamental object of study in mathematics, statistics, and information theory. On the one hand, it involves pure group theory, governing inequalities satisfied by subgroup indices, whereas on the other hand, computing network coding capacities amounts to a convex optimization over this region. In the case of four random variables, the points in the region that satisfy the Ingleton inequality (corresponding to abelian groups and to linear network codes) form a well-understood...

Visual simultaneous localisation and map-building supported by structured landmarks

Robert Bączyk, Andrzej Kasiński (2010)

International Journal of Applied Mathematics and Computer Science

Visual simultaneous localisation and map-building systems which take advantage of some landmarks other than point-wise environment features are not frequently reported. In the following paper the method of using the operational map of robot surrounding, which is complemented with visible structured passive landmarks, is described. These landmarks are used to improve self-localisation accuracy of the robot camera and to reduce the size of the Kalman-filter state-vector with respect to the vector...

Currently displaying 1 – 10 of 10

Page 1