The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
430
The girth of graphs on Weyl groups, with no restriction on the associated root system, is determined. It is shown that the girth, when it is defined, is 3 except for at most four graphs for which it does not exceed 4.
Via representation of vertex-transitive graphs on groupoids, we show that left loops with units are factors of groups, i.e., left loops are transversals of left cosets on which it is possible to define a binary operation which allows left cancellation.
A Γ-distance magic labeling of a graph G = (V, E) with |V| = n is a bijection ℓ from V to an Abelian group Γ of order n such that the weight
of every vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G is called a group distance magic graph if there exists a Γ-distance magic labeling for every Abelian group Γ of order |V(G)|. In this paper we give necessary and sufficient conditions for complete k-partite graphs of odd order p to be ℤp-distance magic. Moreover...
In this note, the octonion multiplication table is recovered from a regular tesselation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map.
In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group . As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to except . Also, we prove that if is an almost simple group related to except and is a finite group such that and , then .
We deal with the graph operator defined to be the complement of the square of a graph: . Motivated by one of many open problems formulated in [6] we look for graphs that are 2-periodic with respect to this operator. We describe a class of bipartite graphs possessing the above mentioned property and prove that for any m,n ≥ 6, the complete bipartite graph can be decomposed in two edge-disjoint factors from . We further show that all the incidence graphs of Desarguesian finite projective geometries...
We revisit the problem of deciding whether a finitely generated subgroup is a free factor of a given free group . Known algorithms solve this problem in time polynomial in the sum of the lengths of the generators of and exponential in the rank of . We show that the latter dependency can be made exponential in the rank difference rank - rank, which often makes a significant change.
We revisit the problem of deciding whether a finitely generated
subgroup H is a free factor of a given free group F. Known
algorithms solve this problem in time polynomial in the sum of the
lengths of the generators of H and exponential in the rank of
F. We show that the latter dependency can be made exponential
in the rank difference rank(F) - rank(H), which often makes a
significant change.
We give necessary and sufficient conditions for various vertex-transitivity of Cayley graphs of the class of completely 0-simple semigroups and its several subclasses. Moreover, the question when the Cayley graphs of completely 0-simple semigroups are undirected is considered.
Currently displaying 201 –
220 of
430