The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 561 –
580 of
669
An edge ordering of a graph G is an injection f : E(G) → R, the set of real numbers. A path in G for which the edge ordering f increases along its edge sequence is called an f-ascent ; an f-ascent is maximal if it is not contained in a longer f-ascent. The depression of G is the smallest integer k such that any edge ordering f has a maximal f-ascent of length at most k. A k-kernel of a graph G is a set of vertices U ⊆ V (G) such that for any edge ordering f of G there exists a maximal f-ascent of...
In this paper we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998), 199–206). A paired-dominating set of a graph with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of , denoted by , is the minimum cardinality of a paired-dominating set of . The graph is paired-domination vertex critical if for every vertex of that is not adjacent to a vertex of degree one,...
The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices, there...
An edge dominating set of a graph is a set D of edges such that every edge not in D is adjacent to at least one edge in D. In this paper we present a linear time algorithm for finding a minimum edge dominating set of a block graph.
The irregularity of a graph is defined as the sum of imbalances over all edges , where denotes the degree of the vertex in . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with vertices and pendant vertices (), and characterize the corresponding extremal graphs.
In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed interior vertices of degree...
We consider the one-colour triangle avoidance game. Using a high performance computing network, we showed that the first player can win the game on 16 vertices.
For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic...
The Gutman index and the edge-Wiener index have been extensively investigated particularly in the last decade. An important stream of re- search on graph indices is to bound indices in terms of the order and other parameters of given graph. In this paper we present asymptotically sharp upper bounds on the Gutman index and the edge-Wiener index for graphs of given order and vertex-connectivity κ, where κ is a constant. Our results substantially generalize and extend known results in the area.
The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned...
The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal...
Currently displaying 561 –
580 of
669