The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 361 –
376 of
376
A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph Υt (G) is the minimum size of a total dominating set. We provide a short proof of the result that Υt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.
We determine upper bounds for and , the domination and independent domination numbers, respectively, of the graph obtained from the moves of queens on the n×n chessboard drawn on the torus.
For a graph property and a graph , we define the domination subdivision number with respect to the property to be the minimum number of edges that must be subdivided (where each edge in can be subdivided at most once) in order to change the domination number with respect to the property . In this paper we obtain upper bounds in terms of maximum degree and orientable/non-orientable genus for the domination subdivision number with respect to an induced-hereditary property, total domination...
Let G be a graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and Σx∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that Σdi=1 fi(x) ≤ k for each x ∈ V (G), is called a signed total (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed...
Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if Uv∈S N[v] = V , where N[v] is the closed neighborhood of v. Let L ⊆ V be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in L ∩ N[v] can report that v is the location of the intruder, but (at most) one x ∈ L ∩ N[v] can report any w ∈ N[x] as the intruder location or x can indicate that there is no intruder in N[x]. A dominating set L is called a liar’s dominating set if every v ∈ V (G) can be correctly...
A set of vertices in a graph is called a paired-dominating set if it dominates and contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.
Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, γ(G), and the total domination number, γt(G). A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, γt2(G), is the minimum cardinality of a semitotal dominating set of...
In this paper we extend the notion of weak degree domination in graphs to hypergraphs and find relationships among the domination number, the weak edge-degree domination number, the independent domination number and the independence number of a given hypergraph.
Let G = (V,E) be a graph and f be a function f:V → 0,1,2. A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f’: V → 0,1,2 defined by f’(u) = 1, f’(v) = f(v)-1 and f’(w) = f(w) if w ∈ V-u,v, has no undefended vertex. The weight of f is . The weak Roman domination number,...
A dominating set is a weakly connected dominating set in if the subgraph weakly induced by is connected, where is the set of all edges having at least one vertex in . Weakly connected domination number of a graph is the minimum cardinality among all weakly connected dominating sets in . A graph is said to be weakly connected domination stable or just -stable if for every edge belonging to the complement of We provide a constructive characterization of weakly connected domination...
A set D of vertices in a graph G = (V,E) is a weakly connected dominating set of G if D is dominating in G and the subgraph weakly induced by D is connected. The weakly connected domination number of G is the minimum cardinality of a weakly connected dominating set of G. The weakly connected domination subdivision number of a connected graph G is the minimum number of edges that must be subdivided (where each egde can be subdivided at most once) in order to increase the weakly connected domination...
We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a sequence of vertices, say γ = (u0, u1, . . . , un), such that ui ≠ uj if i ≠ j and for every i ∈ 0, 1, . . . , n there is a uiui+1-monochromatic path in D and there is no ui+1ui-monochromatic path in D (the indices...
A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in V -S is adjacent to at least one vertex in S. The domination number γ(G) of G equals the minimum cardinality of a dominating set S in G; we say that such a set S is a γ-set. In this paper we consider the family of all γ-sets in a graph G and we define the γ-graph G(γ) = (V(γ), E(γ)) of G to be the graph whose vertices V(γ) correspond 1-to-1 with the γ-sets of G, and two γ-sets, say D₁ and D₂, are adjacent in E(γ) if there exists...
Currently displaying 361 –
376 of
376