The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A simplex of a graph G is a subgraph of G which is a complete graph. The simplex graph Simp(G) of G is the graph whose vertex set is the set of all simplices of G and in which two vertices are adjacent if and only if they have a non-empty intersection. The simplex graph operator is the operator which to every graph G assigns its simplex graph Simp(G). The paper studies graphs which are fixed in this operator and gives a partial answer to a problem suggested by E. Prisner.
A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.
The paper describes the properties of two transformations of graphs. One of them was introduced by F. Gliviak for the sake of study of metric properties of graphs, the other is related to it.
We introduce object systems as a common generalization of graphs, hypergraphs, digraphs and relational structures. Let C be a concrete category, a simple object system over C is an ordered pair S = (V,E), where E = A₁,A₂,...,Aₘ is a finite set of the objects of C, such that the ground-set of each object is a finite set with at least two elements and . To generalize the results on graph colourings to simple object systems we define, analogously as for graphs, that an additive induced-hereditary...
The Θ-graph Θ(G) of a partial cube G is the intersection graph of the equivalence classes of the Djoković-Winkler relation. Θ-graphs that are 2-connected, trees, or complete graphs are characterized. In particular, Θ(G) is complete if and only if G can be obtained from K₁ by a sequence of (newly introduced) dense expansions. Θ-graphs are also compared with familiar concepts of crossing graphs and τ-graphs.
In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph with , which implies that Zamfirescu’s conjecture is true.
Currently displaying 61 –
71 of
71