On the mappings of elliptic curves defined over into .
Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) with d ∈ N for nonsingular , i=1,...,n.
We prove that the sums of independent random vectors satisfy , t ≥ 0.
We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate.
For the cyclotomic -extension of an imaginary quadratic field , we consider the Galois group of the maximal unramified pro--extension over . In this paper, we give some families of for which is a metabelian pro--group with the explicit presentation, and determine the case that becomes a nonabelian metacyclic pro--group. We also calculate Iwasawa theoretically the Galois groups of -class field towers of certain cyclotomic -extensions.
We provide upper bounds for the mean square integralwhere and lies in a suitable range. For a fixed integer, is the error term in the asymptotic formula for the summatory function of the divisor function , generated by .