Displaying 201 – 220 of 314

Showing per page

Résultats élémentaires sur certaines équations diophantiennes

Pierre Samuel (2002)

Journal de théorie des nombres de Bordeaux

Dans des travaux profonds, W. Ljunggren a montré que, pour a > 0 donné, les équations diophantiennes x 4 - a y 2 = 1 and x 2 - a y 4 = 1 ont au plus 1 ou 2 solutions non triviales. Par des méthodes élémentaires, je réponds ici à la question : pour quelles valeurs de a , premières ou analogues, ont-elles des solutions non-triviales ?

S -integral points on elliptic curves - Notes on a paper of B. M. M. de Weger

Emanuel Herrmann, Attila Pethö (2001)

Journal de théorie des nombres de Bordeaux

In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and p -adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.

S -integral solutions to a Weierstrass equation

Benjamin M. M. de Weger (1997)

Journal de théorie des nombres de Bordeaux

The rational solutions with as denominators powers of 2 to the elliptic diophantine equation y 2 = x 3 - 228 x + 848 are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term ( S -) unit equations with special properties, that are solved by linear forms in real and p -adic logarithms.

Solutions of cubic equations in quadratic fields

K. Chakraborty, Manisha V. Kulkarni (1999)

Acta Arithmetica

Let K be any quadratic field with K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over ℚ, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r+s+t = rst = 1 in K . This Diophantine equation gives an elliptic curve defined over ℚ with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields...

Solutions of x³+y³+z³=nxyz

Erik Dofs (1995)

Acta Arithmetica

The diophantine equation (1) x³ + y³ + z³ = nxyz has only trivial solutions for three (probably) infinite sets of n-values and some other n-values ([7], Chs. 10, 15, [3], [2]). The main set is characterized by: n²+3n+9 is a prime number, n-3 contains no prime factor ≡ 1 (mod 3) and n ≠ - 1,5. Conversely, equation (1) is known to have non-trivial solutions for infinitely many n-values. These solutions were given either as "1 chains" ([7], Ch. 30, [4], [6]), as recursive...

Currently displaying 201 – 220 of 314