The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be an odd integer and be any given real number. We prove that if , , , , are nonzero real numbers, not all of the same sign, and is irrational, then for any real number with , the inequality
has infinitely many solutions in prime variables , where for and for odd integer with . This improves a recent result in W. Ge, T. Wang (2018).
Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality
holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].
Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility...
We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called “quotient problem” (resp. "-th root problem"), which in short asks whether the integrality of the values of the quotient (resp. -th root) of two (resp. one) linear recurrences implies that this quotient (resp. -th root) is itself a recurrence. We shall also relate such...
The ring of power sums is formed by complex functions on of the formfor some and . Let be absolutely irreducible, monic and of degree at least in . We consider Diophantine inequalities of the formand show that all the solutions have parametrized by some power sums in a finite set. As a consequence, we prove that the equationwith not constant, monic in and not constant, has only finitely many solutions.
Currently displaying 1 –
20 of
94