The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Computing modular degrees using L -functions

Christophe Delaunay (2003)

Journal de théorie des nombres de Bordeaux

We give an algorithm to compute the modular degree of an elliptic curve defined over . Our method is based on the computation of the special value at s = 2 of the symmetric square of the L -function attached to the elliptic curve. This method is quite efficient and easy to implement.

Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture

Krzysztof Klosin (2009)

Annales de l’institut Fourier

Let k be a positive integer divisible by 4, p > k a prime, f an elliptic cuspidal eigenform (ordinary at p ) of weight k - 1 , level 4 and non-trivial character. In this paper we provide evidence for the Bloch-Kato conjecture for the motives ad 0 M ( - 1 ) and ad 0 M ( 2 ) , where M is the motif attached to f . More precisely, we prove that under certain conditions the p -adic valuation of the algebraic part of the symmetric square L -function of f evaluated at k provides a lower bound for the p -adic valuation of the order of the Pontryagin...

Currently displaying 1 – 20 of 21

Page 1 Next