The search session has expired. Please query the service again.
Displaying 81 –
100 of
121
Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally -adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.
On considère une hauteur adélique absolue sur l’ensemble des points algébriques de la droite projective , relative à un fibré en droites ample. Nous donnons une formule asymptotique pour le nombre de points algébriques de de degré fixé et de hauteur inférieure à B, lorsque tend vers l’infini. Le cas où la hauteur considérée est la hauteur absolue usuelle a été traité par Masser et Vaaler. Nous généralisons ce résultat pour les hauteurs adéliques quelconques, en adoptant un point de vue géométrique...
Si est une variété algébrique projective sur un corps de nombres dont les points rationnels sont denses pour la topologie de Zariski, il est naturel de munir d’une hauteur et d’étudier de manière asymptotique les points de hauteur bornée sur . Le but de ce texte est de faire le survol d’un programme initié par Manin visant à interpréter de façon géométrique ce comportement.
On décrit dans cet article une version effective d’un théorème de Rumely : on peut
trouver beaucoup de points entiers sur des ouverts (assez grands) de variétés
arithmétiques, tout en contrôlant la hauteur de ces points. On applique ensuite ce
résultat :- aux modèles de variétés abéliennes;- à la démonstration d’un
analogue arithmétique des théorèmes de Bertini.
For an algebraic number field and a subset , we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in vanishing at the point .
Soit la hauteur logarithmique absolue de Weil sur . En utilisant l’inégalité des pentes de J.-B. Bost, nous donnons dans cet article une preuve du résultat suivant dû à Dobrowolski : il existe une constante telle queavec et où représente le groupe des racines de l’unité.
This is a survey paper on the distribution of algebraic points on algebraic varieties.
Nous montrons dans la première partie l’existence d’un prolongement méromorphe à tout le plan complexe et explicitons les propriétés et quelques conséquences, d’une large classe de séries zêta des hauteurs associées à l’espace projectif
We consider Thue equations of the form , and assuming the truth of the abc-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations of degree at least six.
Let be a compact subanalytic surface. This paper shows that, in a
suitable sense, there are very few rational points of that do not lie on some
connected semialgebraic curve contained in .
A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of . We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K.
Le but de cet article est d’étudier une conjecture de Lang énoncée sur les courbes elliptiques dans un livre de Serge Lang, puis généralisée aux variétés abéliennes de dimension supérieure dans un article de Joseph Silverman. On donne un résultat asymptotique sur la hauteur des points de Heegner sur , lequel permet de déduire que la conjecture est optimale dans sa formulation.
Currently displaying 81 –
100 of
121