The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soit un corps de nombres. Dans ce travail nous calculons des majorants effectifs pour la taille des solutions en entiers algébriques de des équations, , où a au moins trois racines d’ordre impair, et où et a au moins deux racines d’ordre premier à . On améliore ainsi les estimations connues ([2],[9]) pour les solutions de ces équations en entiers algébriques de .
Let be quadratic forms with real coefficients. We prove that for any the system of inequalities has a nonzero integer solution, provided that the system has a nonsingular real solution and all forms in the real pencil generated by are irrational and have rank .
Currently displaying 1 –
10 of
10