The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Les valeurs aux entiers pairs (strictement positifs) de la fonction de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de . En revanche, on sait très peu de choses sur la nature arithmétique des , pour entier. Apéry a démontré en 1978 que est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de sont irrationnels, mais sans pouvoir en exhiber aucun autre que . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...
We generalize a previous result due to Badea relating to the irrationality of some quick convergent infinite series.
The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.
For , , , let be the -th polylogarithm of . We prove that for any non-zero algebraic number such that , the -vector space spanned by has infinite dimension. This result extends a previous one by Rivoal for rational . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.
Let be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function
We consider the behavior of the power series as z tends to along a radius of the unit circle. If β is irrational with irrationality exponent 2 then . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that .
Currently displaying 41 –
60 of
93