Displaying 41 – 60 of 93

Showing per page

Irrationalité de valeurs de zêta

Stéphane Fischler (2002/2003)

Séminaire Bourbaki

Les valeurs aux entiers pairs (strictement positifs) de la fonction ζ de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de π . En revanche, on sait très peu de choses sur la nature arithmétique des ζ ( 2 k + 1 ) , pour k 1 entier. Apéry a démontré en 1978 que ζ ( 3 ) est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de ζ ( 2 k + 1 ) sont irrationnels, mais sans pouvoir en exhiber aucun autre que ζ ( 3 ) . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...

Irrationality of quick convergent series

Jaroslav Hančl (1996)

Journal de théorie des nombres de Bordeaux

We generalize a previous result due to Badea relating to the irrationality of some quick convergent infinite series.

Linear independence of continued fractions

Jaroslav Hančl (2002)

Journal de théorie des nombres de Bordeaux

The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.

Linear independence of linear forms in polylogarithms

Raffaele Marcovecchio (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

For x , | x | < 1 , s , let Li s ( x ) be the s -th polylogarithm of x . We prove that for any non-zero algebraic number α such that | α | < 1 , the ( α ) -vector space spanned by 1 , Li 1 ( α ) , Li 2 ( α ) , has infinite dimension. This result extends a previous one by Rivoal for rational α . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.

On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values

Oleg Petrushov (2015)

Acta Arithmetica

We consider the behavior of the power series 0 ( z ) = n = 1 μ 2 ( n ) z n as z tends to e ( β ) = e 2 π i β along a radius of the unit circle. If β is irrational with irrationality exponent 2 then 0 ( e ( β ) r ) = O ( ( 1 - r ) - 1 / 2 - ε ) . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that 0 ( e ( β ) r ) = Ω ( ( 1 - r ) - 1 + δ ) .

Currently displaying 41 – 60 of 93