The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
292
For any positive integer , let be the -generalized Pell sequence which starts with ( terms) with the linear recurrence
Let be Narayana’s sequence given by
The purpose of this paper is to determine all -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation
in nonnegative integers , , and .
Let be a pure number field generated by a complex root of a monic irreducible polynomial , where , , are three positive natural integers. The purpose of this paper is to study the monogenity of . Our results are illustrated by some examples.
Let be a number field generated by a complex root of a monic irreducible polynomial , , is a square free rational integer. We prove that if or and , then the number field is monogenic. If or , then the number field is not monogenic.
Let be an extension of a number field , where satisfies the monic irreducible polynomial of prime degree belonging to ( is the ring of integers of ). The purpose of this paper is to study the monogenity of over by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field with a...
We compute the -theory of -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the -theory of these semigroup -algebras in terms of the -theory for the reduced group -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.
We show that the S-Euclidean minimum of an ideal class is a rational number, generalizing a result of Cerri. In the proof, we actually obtain a slight refinement of this and give some corollaries which explain the relationship of our results with Lenstra's notion of a norm-Euclidean ideal class and the conjecture of Barnes and Swinnerton-Dyer on quadratic forms. In particular, we resolve a conjecture of Lenstra except when the S-units have rank one. The proof is self-contained but uses ideas from...
Currently displaying 161 –
180 of
292