The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 461

Showing per page

Different groups of circular units of a compositum of real quadratic fields

Radan Kučera (1994)

Acta Arithmetica

There are many different definitions of the group of circular units of a real abelian field. The aim of this paper is to study their relations in the special case of a compositum k of real quadratic fields such that -1 is not a square in the genus field K of k in the narrow sense. The reason why fields of this type are considered is as follows. In such a field it is possible to define a group C of units (slightly bigger than Sinnott's group of circular units) such that the Galois...

Diophantine equations and class number of imaginary quadratic fields

Zhenfu Cao, Xiaolei Dong (2000)

Discussiones Mathematicae - General Algebra and Applications

Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μ i - 1 , 1 ( i = 1 , 2 ) , and let h ( - 2 1 - e D ) ( e = 0 o r 1 ) denote the class number of the imaginary quadratic field ( ( - 2 1 - e D ) ) . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h ( - 2 1 - e D ) 0 ( m o d n ) , where D, and n satisfy k - 2 e + 1 = D x ² , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

Currently displaying 101 – 120 of 461