The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminantA large part of the proof is in establishing the following more general result: Let be a Galois number field of odd prime degree and conductor . Assume the GRH for . Ifthen is not norm-Euclidean.
On démontre, à partir de résultats de H.J. Godwin, H. Brunotte et F. Halter-Koch, le théorème suivant : soit un corps cubique cyclique de conducteur dont le groupe de Galois est engendré par ; soit le groupe des unités de norme 1.Soit , , telle que soit minimum. Alors est un -générateur de .
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
Currently displaying 1 –
7 of
7