The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis

Kevin J. McGown (2012)

Journal de Théorie des Nombres de Bordeaux

Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant Δ = 7 2 , 9 2 , 13 2 , 19 2 , 31 2 , 37 2 , 43 2 , 61 2 , 67 2 , 103 2 , 109 2 , 127 2 , 157 2 . A large part of the proof is in establishing the following more general result: Let K be a Galois number field of odd prime degree and conductor f . Assume the GRH for ζ K ( s ) . If 38 ( - 1 ) 2 ( log f ) 6 log log f < f , then K is not norm-Euclidean.

Note à propos d'une conjecture de H.J. Godwin sur les unités des corps cubiques

Marie-Nicole Gras (1980)

Annales de l'institut Fourier

On démontre, à partir de résultats de H.J. Godwin, H. Brunotte et F. Halter-Koch, le théorème suivant : soit K un corps cubique cyclique de conducteur m dont le groupe de Galois G est engendré par σ ; soit E le groupe des unités de norme 1.Soit ϵ E , ϵ 1 , telle que 𝒮 ( ϵ ) = 1 2 [ ( ϵ - ϵ σ ) 2 + ( ϵ σ - ϵ σ 2 ) 2 + ( ϵ σ 2 - ϵ ) 2 ] soit minimum. Alors ϵ est un Z [ G ] -générateur de E .

Note on the Hilbert 2-class field tower

Abdelmalek Azizi, Mohamed Mahmoud Chems-Eddin, Abdelkader Zekhnini (2022)

Mathematica Bohemica

Let k be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields 𝕜 = ( d , - 1 ) , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).

Currently displaying 1 – 7 of 7

Page 1