The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Some quartic number fields containing an imaginary quadratic subfield

Stéphane R. Louboutin (2011)

Colloquium Mathematicae

Let ε be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field K = ℚ(ε) to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of K to be equal to ℤ[ε]. We also prove that the class number of such K's goes to infinity effectively with the discriminant of K.

Sur le groupe des unités de corps de nombres de degré 2 et 4

M’hammed Ziane (2007)

Journal de Théorie des Nombres de Bordeaux

Nous déterminons sous certaines hypothèses, un système fondamental d’unités du corps non pur K = ( ω ) et de son sous-corps quadratique, où ω est solution du polynôme f ( X ) = X 4 + d - 2 M 6 X 2 - M 4 , avec M 6 = D 6 + 6 D 4 d + 9 D 2 d 2 + 2 d 3 , M 4 = D 4 + 4 D 2 d + 2 d 2 , d | D , d , D , non nuls.

Currently displaying 1 – 7 of 7

Page 1