Displaying 2021 – 2040 of 2843

Showing per page

Rings with divisibility on descending chains of ideals

Oussama Aymane Es Safi, Najib Mahdou, Ünsal Tekir (2024)

Czechoslovak Mathematical Journal

This paper deals with the rings which satisfy D C C d condition. This notion has been introduced recently by R. Dastanpour and A. Ghorbani (2017) as a generalization of Artnian rings. It is of interest to investigate more deeply this class of rings. This study focuses on commutative case. In this vein, we present this work in which we examine the transfer of these rings to the trivial, amalgamation and polynomial ring extensions. We also investigate the relationship between this class of rings and the...

S -depth on Z D -modules and local cohomology

Morteza Lotfi Parsa (2021)

Czechoslovak Mathematical Journal

Let R be a Noetherian ring, and I and J be two ideals of R . Let S be a Serre subcategory of the category of R -modules satisfying the condition C I and M be a Z D -module. As a generalization of the S - depth ( I , M ) and depth ( I , J , M ) , the S - depth of ( I , J ) on M is defined as S - depth ( I , J , M ) = inf { S - depth ( 𝔞 , M ) : 𝔞 W ˜ ( I , J ) } , and some properties of this concept are investigated. The relations between S - depth ( I , J , M ) and H I , J i ( M ) are studied, and it is proved that S - depth ( I , J , M ) = inf { i : H I , J i ( M ) S } , where S is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with...

S L 2 , the cubic and the quartic

Yannis Y. Papageorgiou (1998)

Annales de l'institut Fourier

We describe the branching rule from S p 4 to S L 2 , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.

Currently displaying 2021 – 2040 of 2843