The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2361 – 2380 of 2843

Showing per page

The equations of space curves on a quadric.

Roberta Di Gennaro, Uwe Nagel (2007)

Collectanea Mathematica

The homogeneous ideals of curves in a double plane have been studied by Chiarli, Greco, Nagel. Completing this work we describe the equations of any curve that is contained in some quadric. As a consequence, we classify the Hartshorne-Rao modules of such curves.

The existence of equivariant pure free resolutions

David Eisenbud, Gunnar Fløystad, Jerzy Weyman (2011)

Annales de l’institut Fourier

Let A = K [ x 1 , , x m ] be a polynomial ring in m variables and let d = ( d 0 < < d m ) be a strictly increasing sequence of m + 1 integers. Boij and Söderberg conjectured the existence of graded A -modules M of finite length having pure free resolution of type d in the sense that for i = 0 , , m the i -th syzygy module of M has generators only in degree d i .This paper provides a construction, in characteristic zero, of modules with this property that are also G L ( m ) -equivariant. Moreover, the construction works over rings of the form A K B where A is a polynomial...

The F4-algorithm for Euclidean rings

Afshan Sadiq (2010)

Open Mathematics

In this short note, we extend Faugére’s F4-algorithm for computing Gröbner bases to polynomial rings with coefficients in an Euclidean ring. Instead of successively reducing single S-polynomials as in Buchberger’s algorithm, the F4-algorithm is based on the simultaneous reduction of several polynomials.

The First Isomorphism Theorem and Other Properties of Rings

Artur Korniłowicz, Christoph Schwarzweller (2014)

Formalized Mathematics

Different properties of rings and fields are discussed [12], [41] and [17]. We introduce ring homomorphisms, their kernels and images, and prove the First Isomorphism Theorem, namely that for a homomorphism f : R → S we have R/ker(f) ≅ Im(f). Then we define prime and irreducible elements and show that every principal ideal domain is factorial. Finally we show that polynomial rings over fields are Euclidean and hence also factorial

The five-variable Volterra system

Janusz Zieliński (2011)

Open Mathematics

We give a description of all polynomial constants of the five-variable Volterra derivation, hence of all polynomial first integrals of its corresponding Volterra system of differential equations. The Volterra system plays a significant role in plasma physics and population biology.

The F-method and a branching problem for generalized Verma modules associated to ( Lie G 2 , so ( 7 ) )

Todor Milev, Petr Somberg (2013)

Archivum Mathematicum

The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras Lie G 2 i so ( 7 ) , and generalized conformal so ( 7 ) -Verma modules of scalar type. As a result, we classify the i ( Lie G 2 ) 𝔭 -singular vectors for this class of so ( 7 ) -modules.

The fourteenth problem of Hilbert for polynomial derivations

Andrzej Nowicki (2002)

Banach Center Publications

We present some facts, observations and remarks concerning the problem of finiteness of the rings of constants for derivations of polynomial rings over a commutative ring k containing the field ℚ of rational numbers.

The fundamental constituents of iteration digraphs of finite commutative rings

Jizhu Nan, Yangjiang Wei, Gaohua Tang (2014)

Czechoslovak Mathematical Journal

For a finite commutative ring R and a positive integer k 2 , we construct an iteration digraph G ( R , k ) whose vertex set is R and for which there is a directed edge from a R to b R if b = a k . Let R = R 1 ... R s , where s > 1 and R i is a finite commutative local ring for i { 1 , ... , s } . Let N be a subset of { R 1 , , R s } (it is possible that N is the empty set ). We define the fundamental constituents G N * ( R , k ) of G ( R , k ) induced by the vertices which are of the form { ( a 1 , , a s ) R : a i D ( R i ) if R i N , otherwise a i U ( R i ) , i = 1 , ... , s } , where U ( R ) denotes the unit group of R and D ( R ) denotes the zero-divisor set of R . We investigate...

Currently displaying 2361 – 2380 of 2843