Displaying 461 – 480 of 2826

Showing per page

Classe de conjugaison du frobenius des variétés abéliennes à réduction ordinaire

Rutger Noot (1995)

Annales de l'institut Fourier

Soient X une variété abélienne sur un corps de nombres E et G son groupe de Mumford–Tate. Soit v une valuation de E et pour tout nombre premier tel que v ( ) = 0 , soit F G ( Q ) l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de X . On montre que si X a une bonne réduction ordinaire en v , alors il existe F G ( Q ) tel que, pour tout , F soit conjugué à F dans G ( Q ) . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de X modulo v .

Classes of Commutative Clean Rings

Wolf Iberkleid, Warren Wm. McGovern (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Let A be a commutative ring with identity and I an ideal of A . A is said to be I - c l e a n if for every element a A there is an idempotent e = e 2 A such that a - e is a unit and a e belongs to I . A filter of ideals, say , of A is Noetherian if for each I there is a finitely generated ideal J such that J I . We characterize I -clean rings for the ideals 0 , n ( A ) , J ( A ) , and A , in terms of the frame of multiplicative Noetherian filters of ideals of A , as well as in terms of more classical ring properties.

Classification of rings with toroidal Jacobson graph

Krishnan Selvakumar, Manoharan Subajini (2016)

Czechoslovak Mathematical Journal

Let R be a commutative ring with nonzero identity and J ( R ) the Jacobson radical of R . The Jacobson graph of R , denoted by 𝔍 R , is defined as the graph with vertex set R J ( R ) such that two distinct vertices x and y are adjacent if and only if 1 - x y is not a unit of R . The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface S n . In this paper, we investigate the genus number of the compact Riemann surface in which 𝔍 R can be embedded and explicitly...

Clôture intégrale des idéaux et équisingularité

Monique Lejeune-Jalabert, Bernard Teissier (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

This text has two parts. The first one is the essentially unmodified text of our 1973-74 seminar on integral dependence in complex analytic geometry at the Ecole Polytechnique with J-J. Risler’s appendix on the Łojasiewicz exponents in the real-analytic framework. The second part is a short survey of more recent results directly related to the content of the seminar.The first part begins with the definition and elementary properties of the ν ¯ order function associated to an ideal I of a reduced analytic...

Cluster categories for algebras of global dimension 2 and quivers with potential

Claire Amiot (2009)

Annales de l’institut Fourier

Let k be a field and A a finite-dimensional k -algebra of global dimension 2 . We construct a triangulated category 𝒞 A associated to A which, if  A is hereditary, is triangle equivalent to the cluster category of A . When 𝒞 A is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...

Cofiniteness and finiteness of local cohomology modules over regular local rings

Jafar A'zami, Naser Pourreza (2017)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R ( R / I ) = Assh R ( I ) . It is shown that the R -module H I ht ( I ) ( R ) is I -cofinite if and only if cd ( I , R ) = ht ( I ) . Also we present a sufficient condition under which this condition the R -module H I i ( R ) is finitely generated if and only if it vanishes.

Cofiniteness of generalized local cohomology modules

Kamran Divaani-Aazar, Reza Sazeedeh (2004)

Colloquium Mathematicae

Let denote an ideal of a commutative Noetherian ring R, and M and N two finitely generated R-modules with pd M < ∞. It is shown that if either is principal, or R is complete local and is a prime ideal with dim R/ = 1, then the generalized local cohomology module H i ( M , N ) is -cofinite for all i ≥ 0. This provides an affirmative answer to a question proposed in [13].

Cofiniteness of torsion functors of cofinite modules

Reza Naghipour, Kamal Bahmanpour, Imaneh Khalili Gorji (2014)

Colloquium Mathematicae

Let R be a Noetherian ring and I an ideal of R. Let M be an I-cofinite and N a finitely generated R-module. It is shown that the R-modules T o r i R ( N , M ) are I-cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. This immediately implies that if I has dimension one (i.e., dim R/I = 1) then the R-modules T o r i R ( N , H I j ( M ) ) are I-cofinite for all i,j ≥ 0. Also, we prove that if R is local, then the R-modules T o r i R ( N , M ) are I-weakly cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3. Finally, it is shown that...

Cohen-Lenstra sums over local rings

Christian Wittmann (2004)

Journal de Théorie des Nombres de Bordeaux

We study series of the form M | Aut R ( M ) | - 1 | M | - u , where R is a commutative local ring, u is a non-negative integer, and the summation extends over all finite R -modules M , up to isomorphism. This problem is motivated by Cohen-Lenstra heuristics on class groups of number fields, where sums of this kind occur. If R has additional properties, we will relate the above sum to a limit of zeta functions of the free modules R n , where these zeta functions count R -submodules of finite index in R n . In particular we will show that...

Currently displaying 461 – 480 of 2826