The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1201 –
1220 of
2843
To every morphism of differential graded Lie algebras we associate a functors of artin rings whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of .
Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.
We study liftings or deformations of -modules ( is the ring of differential operators from EGA IV) from positive characteristic to characteristic zero using ideas of Matzat and Berthelot’s theory of arithmetic -modules. We pay special attention to the growth of the differential Galois group of the liftings. We also apply formal deformation theory (following Schlessinger and Mazur) to analyze the space of all liftings of a given -module in positive characteristic. At the end we compare the problems...
In this note we generalize some results from finite fields to Galois rings which are finite extensions of the ring Zpm of integers modulo pm where p is a prime and m ≥ 1.
Let be a finite extension of . The field of norms of a -adic Lie extension is a local field of characteristic which comes equipped with an action of . When can we lift this action to characteristic , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of -modules, and give a condition for the existence of certain types of lifts.
Let k be a field. We describe all linear derivations d of the polynomial algebra k[x₁,...,xₘ] such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of char k = 0, (b) over in the case of char k = p > 0.
Let k be a field, let
be a finite group. We describe linear
-gradings of the polynomial algebra k[x 1, ..., x m] such that the unit component is a polynomial k-algebra.
We consider a commutative ring with identity and a positive integer . We characterize all the 3-tuples of linear transforms over , having the “circular convolution” property, i.eṡuch that for all .
Given a 3-dimensional vector field V with coordinates , and that are homogeneous polynomials in the ring k[x,y,z], we give a necessary and sufficient condition for the existence of a Liouvillian first integral of V which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in the ring k[x,y,z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaff and orthogonal to the vector field V. Thus, our theorem links the existence...
Let be an ideal of a commutative Noetherian ring . It is shown that the -modules are -cofinite for all finitely generated -modules and all if and only if the -modules and are -cofinite for all finitely generated -modules , and all integers .
Currently displaying 1201 –
1220 of
2843