The search session has expired. Please query the service again.

Displaying 1581 – 1600 of 2843

Showing per page

On the Anderson-Badawi ω R [ X ] ( I [ X ] ) = ω R ( I ) conjecture

Peyman Nasehpour (2016)

Archivum Mathematicum

Let R be a commutative ring with an identity different from zero and n be a positive integer. Anderson and Badawi, in their paper on n -absorbing ideals, define a proper ideal I of a commutative ring R to be an n -absorbing ideal of R , if whenever x 1 x n + 1 I for x 1 , ... , x n + 1 R , then there are n of the x i ’s whose product is in I and conjecture that ω R [ X ] ( I [ X ] ) = ω R ( I ) for any ideal I of an arbitrary ring R , where ω R ( I ) = min { n : I is an n -absorbing ideal of R } . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions...

On the approximate roots of polynomials

Janusz Gwoździewicz, Arkadiusz Płoski (1995)

Annales Polonici Mathematici

We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.

On the arithmetic of arithmetical congruence monoids

M. Banister, J. Chaika, S. T. Chapman, W. Meyerson (2007)

Colloquium Mathematicae

Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of b = / b , then the set H Γ = x | x + b Γ 1 is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If H Γ is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...

On the Briançon-Skoda theorem on a singular variety

Mats Andersson, Håkan Samuelsson, Jacob Sznajdman (2010)

Annales de l’institut Fourier

Let Z be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring 𝒪 Z ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.

On the canonical ideal of a set of points

Martin Kreuzer (2000)

Bollettino dell'Unione Matematica Italiana

Dato un insieme X di s punti nello spazio proiettivo, si costruisce un esplicito ideale canonico I nel suo anello di coordinate R . Si descrivono le componenti omogenee di I e la struttura della mappa di moltiplicazione R σ I σ + 1 I 2 σ + 1 , dove σ = max i H X i < s . Tra le applicazioni ci sono varie caratterizzazioni di insiemi di punti coomologicamente uniformi, disuguaglianze nelle loro funzioni di Hilbert, il calcolo del primo modulo delle sizigie di I in casi particolari, una generalizzazione della «trasformata di Gale» a trasformate...

On the Cantor-Bendixson rank of metabelian groups

Yves Cornulier (2011)

Annales de l’institut Fourier

We study the Cantor-Bendixson rank of metabelian and virtually metabelian groups in the space of marked groups, and in particular, we exhibit a sequence ( G n ) of 2-generated, finitely presented, virtually metabelian groups of Cantor-Bendixson rank  ω n .

Currently displaying 1581 – 1600 of 2843