Displaying 1901 – 1920 of 2843

Showing per page

Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces

Othman Echi (2003)

Bollettino dell'Unione Matematica Italiana

In this paper, we deal with the study of quasi-homeomorphisms, the Goldman prime spectrum and the Jacobson prime spectrum of a commutative ring. We prove that, if g : Y X is a quasi-homeomorphism, Z a sober space and f : Y Z a continuous map, then there exists a unique continuous map F : X Z such that F g = f . Let X be a T 0 -space, q : X s X the injection of X onto its sobrification X s . It is shown, here, that q Gold X = Gold X s , where Gold X is the set of all locally closed points of X . Some applications are also indicated. The Jacobson prime spectrum...

Quelques remarques sur les familles canoniques de polynômes générateurs pour l'exponentielle

Michel Langevin (1997)

Annales de l'institut Fourier

Soit K un corps commutatif. Chercher une série formelle S ( X , T ) K [ [ X , T ] ] vérifiant S ( X + Y , T ) / S ( X , T ) K [ [ Y , T ] ] conduit naturellement à étudier l’application U ( T ) ( U ( T ) ) X , U ( T ) étant une unité de l’algèbre K [ [ T ] ] , et à ramener les solutions à la forme S ( X , T ) = n 0 H n ( X ) T n , ( H n ( X ) ) étant une suite de K [ X ] vérifiant les “identités multinomiales” : ( μ ) H n ( X 1 + ... + X k ) = α 1 + ... + α k = n H α 1 ( X 1 ) ... H α k ( X k ) ( n , k 0 ) . Après mise à l’écart par des lemmes combinatoires du cas caract ( K ) > 0 (les solutions sont triviales), on caractérise de plusieurs manières les solutions. On peut les faire coïncider avec l’ensemble NW des suites de polynômes (ou séries génératrices...

Quintasymptotic primes, local cohomology and ideal topologies

A. A. Mehrvarz, R. Naghipour, M. Sedghi (2006)

Colloquium Mathematicae

Let Φ be a system of ideals on a commutative Noetherian ring R, and let S be a multiplicatively closed subset of R. The first result shows that the topologies defined by I a I Φ and S ( I a ) I Φ are equivalent if and only if S is disjoint from the quintasymptotic primes of Φ. Also, by using the generalized Lichtenbaum-Hartshorne vanishing theorem we show that, if (R,) is a d-dimensional local quasi-unmixed ring, then H Φ d ( R ) , the dth local cohomology module of R with respect to Φ, vanishes if and only if there exists...

Quotient Module of Z-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module....

R C * -поля

Ю.Л. Ершов, Ju. L. Eršov, Ǔ. L. Eršov, Ju. L. Eršov (1994)

Algebra i Logika

Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module

Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we formalize some basic facts of Z-module. In the first section, we discuss the rank of submodule of Z-module and its properties. Especially, we formally prove that the rank of any Z-module is equal to or more than that of its submodules, and vice versa, and that there exists a submodule with any given rank that satisfies the above condition. In the next section, we mention basic facts of linear transformations between two Z-modules. In this section, we define homomorphism between...

Rational BV-algebra in string topology

Yves Félix, Jean-Claude Thomas (2008)

Bulletin de la Société Mathématique de France

Let M be a 1-connected closed manifold of dimension m and L M be the space of free loops on M . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of L M , H * ( L M ; k ) . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology H H * ( C * ( M ) ; C * ( M ) ) which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between H H * ( C * ( M ) ; C * ( M ) ) and the shifted homology H * + m ( L M ; k ) . We also prove that the...

Currently displaying 1901 – 1920 of 2843