The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A curve over a non-archimedean valued field is with respect to its analytic structure a finite union of affinoid spaces. The main result states that the class group of a one dimensional, connected, regular affinoid space is trivial if and only if is a subspace of . As a consequence, has locally a trivial class group if and only if the stable reduction of has only rational components.
The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.
Les chtoucas locaux sont des analogues en égales caractéristiques des groupes -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension finie...
Let be a Henselian discrete valuation ring with field of fractions . If is a smooth variety over and a torus over , then we consider -torsors under . If is a model of then, using a result of Brahm, we show that -torsors under extend to -torsors under a Néron model of if is split by a tamely ramified extension of . It follows that the evaluation map associated to such a torsor factors through reduction to the special fibre. In this way we can use the geometry of the special...
Currently displaying 1 –
20 of
21