The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Failure of the Hasse principle for Châtelet surfaces in characteristic 2

Bianca Viray (2012)

Journal de Théorie des Nombres de Bordeaux

Given any global field k of characteristic 2 , we construct a Châtelet surface over k that fails to satisfy the Hasse principle. This failure is due to a Brauer-Manin obstruction. This construction extends a result of Poonen to characteristic 2 , thereby showing that the étale-Brauer obstruction is insufficient to explain all failures of the Hasse principle over a global field of any characteristic.

Fields of moduli of three-point G -covers with cyclic p -Sylow, II

Andrew Obus (2013)

Journal de Théorie des Nombres de Bordeaux

We continue the examination of the stable reduction and fields of moduli of G -Galois covers of the projective line over a complete discrete valuation field of mixed characteristic ( 0 , p ) , where G has a cyclic p -Sylow subgroup P of order p n . Suppose further that the normalizer of P acts on P via an involution. Under mild assumptions, if f : Y 1 is a three-point G -Galois cover defined over ¯ , then the n th higher ramification groups above p for the upper numbering of the (Galois closure of the) extension K / vanish,...

Currently displaying 1 – 7 of 7

Page 1