The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 29

Showing per page

The Brauer group and the Brauer–Manin set of products of varieties

Alexei N. Skorobogatov, Yuri G. Zahrin (2014)

Journal of the European Mathematical Society

Let X and Y be smooth and projective varieties over a field k finitely generated over Q , and let X ¯ and Y ¯ be the varieties over an algebraic closure of k obtained from X and Y , respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br ( X ¯ ) Br( Y ¯ ) has finite index in the Galois invariant subgroup of Br ( X ¯ × Y ¯ ) . This implies that the cokernel of the natural map Br ( X ) Br ( Y ) Br ( X × Y ) is finite when k is a number field. In this case we prove that the Brauer–Manin set of the product of...

The p -part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large

Remke Kloosterman (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper we show that for every prime p 5 the dimension of the p -torsion in the Tate-Shafarevich group of E / K can be arbitrarily large, where E is an elliptic curve defined over a number field K , with [ K : ] bounded by a constant depending only on p . From this we deduce that the dimension of the p -torsion in the Tate-Shafarevich group of A / can be arbitrarily large, where A is an abelian variety, with dim A bounded by a constant depending only on p .

Currently displaying 1 – 20 of 29

Page 1 Next