The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 521 –
540 of
677
Let
be an algebraically closed field. Consider a finite dimensional monomial relations algebra
of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra
. There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern...
In the first part, we study algebras A such that A = R ⨿ I, where R is a subalgebra and I a two-sided nilpotent ideal. Under certain conditions on I, we show that A is standardly stratified if and only if R is standardly stratified. Next, for , we show that A is standardly stratified if and only if the algebra R = U × V is standardly stratified and is a good V-module.
Let be a standard Koszul standardly stratified algebra and an -module. The paper investigates conditions which imply that the module over the Yoneda extension algebra is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.
Let Λ be an artinian ring and let 𝔯 denote its Jacobson radical. We show that a simple module of finite projective dimension has no self-extensions when Λ is graded by its radical, with at most two simple modules and 𝔯⁴ = 0, in particular, when Λ is a finite-dimensional algebra over an algebraically closed field with at most two simple modules and 𝔯³ = 0.
An exchange ring is strongly separative provided that for all finitely generated projective right -modules and , . We prove that an exchange ring is strongly separative if and only if for any corner of , implies that there exist such that and if and only if for any corner of , implies that there exists a right invertible matrix . The dual assertions are also proved.
A -ring is strongly 2-nil--clean if every element in is the sum of two projections and a nilpotent that commute. Fundamental properties of such -rings are obtained. We prove that a -ring is strongly 2-nil--clean if and only if for all , is strongly nil--clean, if and only if for any there exists a -tripotent such that is nilpotent and , if and only if is a strongly -clean SN ring, if and only if is abelian, is nil and is -tripotent. Furthermore, we explore the structure...
Let be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective -modules under the condition that is a cocompatible -bimodule, we establish a recollement of the stable category . We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over .
Let be a self-orthogonal class of left -modules. We introduce a class of modules, which is called strongly -Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly -Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly -Gorenstein module can be inherited by its submodules and quotient modules....
Let be a weak torsion class of left -modules and a positive integer. A left -module is called -injective if for each -presented left -module ; a right -module is called -flat if for each -presented left -module ; a left -module is called -projective if for each -injective left -module ; the ring is called strongly -coherent if whenever is exact, where is -presented and is finitely generated projective, then is -projective; the ring is called -semihereditary...
Certaines relations binaires sont définies sur les demi-groupes et les demi-groupes à involution. On examine comment elles peuvent en ordonner les éléments: notamment les idempotents, les éléments réguliers au sens de von Neumann, ceux qui possédent un inverse ponctuel ou de Moore-Penrose ; et en fonction aussi de conditions sur l'involution. Ces relations peuvent alors coïncider avec les ordres naturels des idempotents et des demi-groupes inverses, avec les ordres de Drazin et de Hartwig : elles...
We show that there is a one-to-one correspondence between basic cotilting complexes and certain contravariantly finite subcategories of the bounded derived category of an artin algebra. This is a triangulated version of a result by Auslander and Reiten. We use this to find an existence criterion for complements to exceptional complexes.
Afin de disposer des opérations cohomologiques aussi souples que possible pour la cohomologie de de Rham -adique, le but principal de ce mémoire est de résoudre intrinsèquement du point de vue cohomologique le problème des relèvements des schémas lisses et de leurs morphismes de la caractéristique à la caractéristique nulle ce qui a été l’une des difficultés centrales de la théorie de la cohomologie de de Rham des schémas algébriques en caractéristique positive depuis le début. Nous montrons...
Currently displaying 521 –
540 of
677