Previous Page 10

Displaying 181 – 200 of 200

Showing per page

Sur l'indice de certaines algèbres de Lie

Patrice Tauvel, Rupert W.T. Yu (2004)

Annales de l’institut Fourier

On donne une majoration de l'indice de certaines algèbres de Lie introduites par V. Dergachev, A. Kirillov et D. Panyushev. On en déduit la preuve d'une conjecture de D. Panyushev. Nous formulons aussi une conjecture concernant l'indice de ces algèbres, et la prouvons dans des cas particuliers. Enfin, nous donnons un résultat concernant l'indice des sous-algèbres paraboliques d'une algèbre de Lie semi-simple.

Sur une algèbre Q-symétrique

A. Guichardet (1997)

Annales Polonici Mathematici

We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.

Surprising properties of centralisers in classical Lie algebras

Oksana Yakimova (2009)

Annales de l’institut Fourier

Let 𝔤 be a classical Lie algebra, i.e., either 𝔤𝔩 n , 𝔰𝔭 n , or 𝔰𝔬 n and let e be a nilpotent element of 𝔤 . We study various properties of the centralisers 𝔤 e . The first four sections deal with rather elementary questions, like the centre of 𝔤 e , commuting varieties associated with 𝔤 e , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on 𝔤 e * and symmetric invariants of 𝔤 e .

Symmetric quantum Weyl algebras

Rafael Díaz, Eddy Pariguan (2004)

Annales mathématiques Blaise Pascal

We study the symmetric powers of four algebras: q -oscillator algebra, q -Weyl algebra, h -Weyl algebra and U ( 𝔰𝔩 2 ) . We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.

Symmetries of an extended Hubbard Model

Bianca Cerchiai, Peter Schupp (1997)

Banach Center Publications

The Hamiltonian for an extended Hubbard model with phonons as introduced by A. Montorsi and M. Rasetti is considered on a D-dimensional lattice. The symmetries of the model are studied in various cases. It is shown that for a certain choice of the parameters a superconducting S U q ( 2 ) holds as a true quantum symmetry, but only for D=1.

Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat, Alvaro Pelayo (2007)

Annales de l’institut Fourier

In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...

Currently displaying 181 – 200 of 200

Previous Page 10