The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 341 –
360 of
363
New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s < n, [resp. 0 < s < n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 < p < ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.
Necessary and sufficient conditions governing two-weight norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
We propose explicit tests of unique solvability of two-point and focal boundary value problems for fractional functional differential equations with Riemann-Liouville derivative.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.
Given , , and , we give sufficient conditions on weights for the commutator of the fractional integral operator, , to satisfy weighted endpoint inequalities on and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on .
Mathematics Subject Classification: 26A16, 26A33, 46E15.There are known various statements on weighted action of one-dimensional and multidimensional fractional integration operators in spaces of continuous functions, such as weighted generalized Hölder spaces Hω0(ρ) of functions with a given dominant ω of their continuity modulus.
Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.We give the proofs of the existence and regularity of the solutions in the space C^∞ (t > 0;H^(s+2) (R^n)) ∩ C^0(t ≧ 0;H^s(R^n)); s ∊ R, for the 1-term, 2-term,..., n-term time-fractional equation evaluated from the time fractional equation of distributed order with spatial Laplace operator Δx ...
Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12In the present paper the Cauchy problem for partial inhomogeneous pseudo-differential equations of fractional order is analyzed. The solvability theorem for the Cauchy problem in the space ΨG,2(R^n) of functions in L2(R^n) whose Fourier transforms are compactly supported in a domain G ⊆ R^n is proved. The representation of the solution in terms of pseudo-differential operators is given. The solvability theorem in the Sobolev...
Currently displaying 341 –
360 of
363