The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 721 – 740 of 2165

Showing per page

On phase segregation in nonlocal two-particle Hartree systems

Walter Aschbacher, Marco Squassina (2009)

Open Mathematics

We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.

On positive Rockland operators

Pascal Auscher, A. ter Elst, Derek Robinson (1994)

Colloquium Mathematicae

Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on L p ( G ; d g ) . Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on L 2 we prove that it is closed on each of the L p -spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the L p -spaces, p ∈ [1,∞]. Further extensions...

On positive solutions of quasilinear elliptic systems

Yuanji Cheng (1997)

Czechoslovak Mathematical Journal

In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems - Δ p u = f ( x , u , v ) , in Ω , - Δ p v = g ( x , u , v ) , in Ω , u = v = 0 , on Ω , where - Δ p is the p -Laplace operator, p > 1 and Ω is a C 1 , α -domain in n . We prove an analogue of [7, 16] for the eigenvalue problem with f ( x , u , v ) = λ 1 v p - 1 , g ( x , u , v ) = λ 2 u p - 1 and obtain a non-existence result of positive solutions for the general systems.

On power series solutions for the Euler equation, and the Behr–Nečas–Wu initial datum

Carlo Morosi, Mario Pernici, Livio Pizzocchero (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the Euler equation for an incompressible fluid on a three dimensional torus, and the construction of its solution as a power series in time. We point out some general facts on this subject, from convergence issues for the power series to the role of symmetries of the initial datum. We then turn the attention to a paper by Behr, Nečas and Wu, ESAIM: M2AN 35 (2001) 229–238; here, the authors chose a very simple Fourier polynomial as an initial datum for the Euler equation and analyzed...

On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in K d × R n - d , where K d is a d-dimensional cone

Vladimir A. Kozlov, Vladimir G. Maz'ya (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a n -dimensional cone K = K d × R n - d is given, where K d is an arbitrary open cone in R d and n > d > 1 .

Currently displaying 721 – 740 of 2165