The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions u ε of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N 2 , where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M 0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of u ε , as ε 0 , is to establish uniform L p bounds for the gradient, for some p > 1 . We review some recent techniques developed in...

Currently displaying 1 – 20 of 35

Page 1 Next