The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 35 of 35

Showing per page

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions uE of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N ≥ 2, where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of uE, as ε → 0, is to establish uniform Lp bounds for the gradient, for some p>1. We review some...

Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations

Guy Barles, Alessio Porretta (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a class of stationary viscous Hamilton-Jacobi equations aswhere λ 0 , A ( x ) is a bounded and uniformly elliptic matrix and H ( x , ξ ) is convex in ξ and grows at most like | ξ | q + f ( x ) , with 1 < q < 2 and f L N / q ' ( Ω ) . Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate,i.e. ( 1 + | u | ) q ¯ - 1 u H 0 1 ( Ω ) , for a certain (optimal) exponent q ¯ . This completes the recent results in [15],...

Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L 1 ( Ω )

M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is - div ( a ( x ) ( 1 + | u | 2 ) p - 2 2 u ) + b ( x ) ( 1 + | u | 2 ) λ 2 = f in Ω , u = 0 on Ω , where Ω is a bounded open subset of N , N 2 , 2 - 1 / N < p < N , a belongs to L ( Ω ) , a ( x ) α 0 > 0 , f is a function in L 1 ( Ω ) , b is a function in L r ( Ω ) and 0 λ < λ * ( N , p , r ) , for some r and λ * ( N , p , r ) .

Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L1(Ω)

M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is
 - div ( a ( x ) ( 1 + | u | 2 ) p - 2 2 u ) + b ( x ) ( 1 + | u | 2 ) λ 2 = f in Ω , u = 0 on Ω , 
where Ω is a bounded open subset of N , N > 2, 2-1/N < p < N , a belongs to L∞(Ω), a ( x ) α 0 > 0 , f is a function in L1(Ω), b is a function in L r ( Ω ) and 0 ≤ λ < λ *(N,p,r), for some r and λ *(N,p,r).

Uniqueness of solutions for some degenerate nonlinear elliptic equations

Albo Carlos Cavalheiro (2014)

Applicationes Mathematicae

We investigate the existence and uniqueness of solutions to the Dirichlet problem for a degenerate nonlinear elliptic equation - i , j = 1 n D j ( a i j ( x ) D i u ( x ) ) + b ( x ) u ( x ) + d i v ( Φ ( u ( x ) ) ) = g ( x ) - j = 1 n f j ( x ) on Ω in the setting of the space H₀(Ω).

Uniqueness of solutions for some elliptic equations with a quadratic gradient term

David Arcoya, Sergio Segura de León (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a comparison principle and uniqueness of positive solutions for the homogeneous Dirichlet boundary value problem associated to quasi-linear elliptic equations with lower order terms. A model example is given by - Δ u + λ | u | 2 u r = f ( x ) , λ , r > 0 . The main feature of these equations consists in having a quadratic gradient term in which singularities are allowed. The arguments employed here also work to deal with equations having lack of ellipticity or some dependence on u in the right hand side. Furthermore, they...

Currently displaying 21 – 35 of 35

Previous Page 2