The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider complex-valued solutions uE of
the Ginzburg–Landau equation on a smooth bounded simply connected
domain Ω of , N ≥ 2, where ε > 0 is
a small parameter. We assume that the
Ginzburg–Landau energy verifies the bound
(natural in the context)
, where M0 is some given constant. We
also make several assumptions on the boundary data. An
important step in the asymptotic analysis of uE, as
ε → 0, is to establish uniform Lp bounds for the
gradient, for some p>1. We review some...
We consider a class of stationary viscous Hamilton-Jacobi equations aswhere , is a bounded and uniformly elliptic matrix and is convex in and grows at most like , with and . Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate,i.e., for a certain (optimal) exponent . This completes the recent results in [15],...
In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype iswhere is a bounded open subset of , , , belongs to , , is a function in , is a function in and for some and .
In this paper we prove uniqueness results for the renormalized
solution, if it exists, of a class of
non coercive nonlinear problems whose prototype is
where Ω is a bounded open subset of , N > 2, 2-1/N < p < N , a belongs to L∞(Ω),
,
f is a function in
L1(Ω), b is a function in and 0 ≤ λ < λ *(N,p,r),
for some r and λ *(N,p,r).
We investigate the existence and uniqueness of solutions to the Dirichlet problem for a degenerate nonlinear elliptic equation
on Ω
in the setting of the space H₀(Ω).
We study a comparison principle and uniqueness of positive solutions for
the homogeneous Dirichlet boundary value problem associated to quasi-linear elliptic equations with
lower order terms. A model example is given by
The main feature of these equations consists in having a
quadratic gradient term in which singularities are allowed. The
arguments employed here also work to deal with equations having
lack of ellipticity or some dependence on u in the right hand
side.
Furthermore, they...
Currently displaying 21 –
35 of
35