Displaying 261 – 280 of 1370

Showing per page

Continuity of solutions of a nonlinear elliptic equation

Pierre Bousquet (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a nonlinear elliptic equation of the form div [a(∇u)] + F[u] = 0 on a domain Ω, subject to a Dirichlet boundary condition tru = φ. We do not assume that the higher order term a satisfies growth conditions from above. We prove the existence of continuous solutions either when Ω is convex and φ satisfies a one-sided bounded slope condition, or when ais radial: a ( ξ ) = l ( | ξ | ) | ξ | ξ a ( ξ ) = l ( | ξ | ) | ξ | ξ for some increasingl:ℝ+ → ℝ+.

Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem

Claudio Marchi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space  [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.

Continuous dependence on function parameters for superlinear Dirichlet problems

Aleksandra Orpel (2005)

Colloquium Mathematicae

We discuss the existence of solutions for a certain generalization of the membrane equation and their continuous dependence on function parameters. We apply variational methods and consider the PDE as the Euler-Lagrange equation for a certain integral functional, which is not necessarily convex and coercive. As a consequence of the duality theory we obtain variational principles for our problem and some numerical results concerning approximation of solutions.

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems

Markus Aurada, Michael Feischl, Dirk Praetorius (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...

Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems

Markus Aurada, Michael Feischl, Dirk Praetorius (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...

Convergent algorithms suitable for the solution of the semiconductor device equations

Miroslav Pospíšek (1995)

Applications of Mathematics

In this paper, two algorithms are proposed to solve systems of algebraic equations generated by a discretization procedure of the weak formulation of boundary value problems for systems of nonlinear elliptic equations. The first algorithm, Newton-CG-MG, is suitable for systems with gradient mappings, while the second, Newton-CE-MG, can be applied to more general systems. Convergence theorems are proved and application to the semiconductor device modelling is described.

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our work was originally...

Currently displaying 261 – 280 of 1370