Displaying 141 – 160 of 445

Showing per page

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present....

Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems

Vít Dolejší, Miloslav Feistauer, Jiří Felcman, Alice Kliková (2002)

Applications of Mathematics

The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the L 2 ( L 2 ) and L 2 ( H 1 ) error estimates are established. At the end...

Evolutionary Games in Space

N. Kronik, Y. Cohen (2009)

Mathematical Modelling of Natural Phenomena

The G-function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G-function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop...

Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

Anna Doubova, A. Osses, J.-P. Puel (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where the diffusion...

Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

Anna Doubova, A. Osses, J.-P. Puel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where the diffusion...

Existence and nonexistence results for reaction-diffusion equations in product of cones

Abdallah Hamidi, Gennady Laptev (2003)

Open Mathematics

Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.

Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.

Maurizio Badii (2000)

Publicacions Matemàtiques

We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.

Existence and uniqueness of solutions of nonlinear infinite systems of parabolic differential-functional equations

Stanisław Brzychczy (2001)

Annales Polonici Mathematici

We consider the Fourier first initial-boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations of parabolic type. The right-hand sides of the system are functionals of unknown functions. The existence and uniqueness of the solution are proved by the Banach fixed point theorem.

Currently displaying 141 – 160 of 445