The search session has expired. Please query the service again.
We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....
We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....
This paper is devoted to the investigation of quasilinear hyperbolic equations of first order with convex and nonconvex hysteresis operator. It is shown that in the nonconvex case the equation, whose nonlinearity is caused by the hysteresis term, has properties analogous to the quasilinear hyperbolic equation of first order. Hysteresis is represented by a functional describing adsorption and desorption on the particles of the substance. An existence result is achieved by using an approximation of...
We consider the Cauchy problem for degenerate parabolic equations with variable coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends on the spatial and time variables. In this paper, we prove the continuous dependence for entropy solutions in the space BV to the problem not only initial function but also all coefficients.
This paper focuses on the analytical properties of the
solutions to the continuity equation with non local flow. Our
driving examples are a supply chain model and an equation for the
description of pedestrian flows. To this aim, we prove the well
posedness of weak entropy solutions in a class of equations
comprising these models. Then, under further regularity conditions,
we prove the differentiability of solutions with respect to the
initial datum and characterize this derivative. A necessary
...
This paper focuses on the analytical properties of the
solutions to the continuity equation with non local flow. Our
driving examples are a supply chain model and an equation for the
description of pedestrian flows. To this aim, we prove the well
posedness of weak entropy solutions in a class of equations
comprising these models. Then, under further regularity conditions,
we prove the differentiability of solutions with respect to the
initial datum and characterize this derivative. A necessary
...
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, is in , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations...
We consider the initial value problem for degenerate
viscous and inviscid scalar conservation laws where the
flux function depends on the spatial location through a
"rough"coefficient function k(x).
We show that the Engquist-Osher
(and hence all monotone)
finite difference approximations converge
to the unique entropy solution
of the governing equation
if, among other demands, k' is in BV, thereby providing
alternative (new) existence proofs for entropy solutions of
degenerate convection-diffusion...
This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial...
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system.
The first scheme converges to weak solutions satisfying an energy and an entropy
dissipation law. The second scheme uses Chorin's
projection method to obtain an efficient approximation that converges to strong
solutions at optimal rates.
Currently displaying 21 –
35 of
35