The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
191
By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.
A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered....
One shows that the linearized Navier-Stokes equation in , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller , , where are independent Brownian motions in a probability space and is a system of functions on with support in an arbitrary open subset . The stochastic control input is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium...
One shows that the linearized Navier-Stokes equation in
, around an unstable equilibrium
solution is exponentially stabilizable in probability by an
internal noise controller , , where are
independent Brownian motions in a probability space and
is a system of functions on with
support in an arbitrary open subset . The
stochastic control input is found in feedback
form. One constructs also a tangential boundary noise controller
which exponentially stabilizes in probability the equilibrium
solution.
...
The Cauchy problem for a stochastic partial differential equation with a spatial correlated Gaussian noise is considered. The "drift" is continuous, one-sided linearily bounded and of at most polynomial growth while the "diffusion" is globally Lipschitz continuous. In the paper statements on existence and uniqueness of solutions, their pathwise spatial growth and on their ultimate boundedness as well as on asymptotical exponential stability in mean square in a certain Hilbert space of weighted functions...
We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small -perturbations.
We shall consider the Schrödinger operators on with the magnetic field given by a nonnegative constant field plus random magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions...
The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.
We describe several results obtained recently on stochastic nonlinear Schrödinger equations. We show that under suitable smoothness assumptions on the noise, the nonlinear Schrödinger perturbed by an additive or multiplicative noise is well posed under similar assumptions on the nonlinear term as in the deterministic theory. Then, we restrict our attention to the case of a focusing nonlinearity with critical or supercritical exponent. If the noise is additive, smooth in space and non degenerate,...
We derive and analyze adaptive solvers for boundary value problems in which the
differential operator depends affinely on a sequence of parameters. These methods converge
uniformly in the parameters and provide an upper bound for the maximal error. Numerical
computations indicate that they are more efficient than similar methods that control the
error in a mean square sense.
We derive and analyze adaptive solvers for boundary value problems in which the
differential operator depends affinely on a sequence of parameters. These methods converge
uniformly in the parameters and provide an upper bound for the maximal error. Numerical
computations indicate that they are more efficient than similar methods that control the
error in a mean square sense.
We study the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.
Currently displaying 161 –
180 of
191