Displaying 4401 – 4420 of 4762

Showing per page

Transport problems and disintegration maps

Luca Granieri, Francesco Maddalena (2013)

ESAIM: Control, Optimisation and Calculus of Variations

By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a...

Transversal intersection of separatrices and branching of solutions as obstructions to the existence of an analitic integral in many-dimensional system. I. Basic results: Separatrices of hyperbolic periodic points.

Sergei A. Dovbysh (1999)

Collectanea Mathematica

It is well-known that the existence of transversally intersecting separatrices of hyperbolic periodic solutions leads, in a typical situation, to complicated and irregular dynamics. Therefore, in the case of a two-dimensional mapping or a three-dimensional flow, with this transversality property, there is no non-trivial analytic or meromorphic first integral, i.e., a function constant along each trajectory of the system under consideration. Additional robust conditions are obtained and discussed...

Transversely affine foliations of some surface bundles over S 1 of pseudo-Anosov type

Hiromichi Nakayama (1991)

Annales de l'institut Fourier

We consider transversely affine foliations without compact leaves of higher genus surface bundles over the circle of pseudo-Anosov type such that the Euler classes of the tangent bundles of the foliations coincide with that of the bundle foliation. We classify such foliations of those surface bundles whose monodromies satisfy a certain condition.

Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications

Yanli He, Kun Li (2021)

Applications of Mathematics

In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.

Tree algebra of sofic tree languages

Nathalie Aubrun, Marie-Pierre Béal (2014)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We consider the languages of finite trees called tree-shift languages which are factorial extensible tree languages. These languages are sets of factors of subshifts of infinite trees. We give effective syntactic characterizations of two classes of regular tree-shift languages: the finite type tree languages and the tree languages which are almost of finite type. Each class corresponds to a class of subshifts of trees which is invariant by conjugacy. For this goal, we define a tree algebra which...

Trees and the dynamics of polynomials

Laura G. DeMarco, Curtis T. McMullen (2008)

Annales scientifiques de l'École Normale Supérieure

In this paper we study branched coverings of metrized, simplicial trees F : T T which arise from polynomial maps f : with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space T D compactifying the moduli space of polynomials of degree D ; that F records the asymptotic behavior of the multipliers of f ; and that any meromorphic family of polynomials over Δ * can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial...

Trees of visible components in the Mandelbrot set

Virpi Kauko (2000)

Fundamenta Mathematicae

We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.

Currently displaying 4401 – 4420 of 4762