The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 362

Showing per page

Invariant subspaces on open Riemann surfaces

Morisuke Hasumi (1974)

Annales de l'institut Fourier

Let R be a hyperbolic Riemann surface, d χ a harmonic measure supported on the Martin boundary of R , and H ( d χ ) the subalgebra of L ( d χ ) consisting of the boundary values of bounded analytic functions on R . This paper gives a complete classification of the closed H ( d χ ) -submodules of L p ( d χ ) , 1 p (weakly * closed, if p = , when R is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy...

Invariant subspaces on open Riemann surfaces. II

Morisuke Hasumi (1976)

Annales de l'institut Fourier

We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.

Iterates and the boundary behavior of the Berezin transform

Jonathan Arazy, Miroslav Engliš (2001)

Annales de l’institut Fourier

Let μ be a measure on a domain Ω in n such that the Bergman space of holomorphic functions in L 2 ( Ω , μ ) possesses a reproducing kernel K ( x , y ) and K ( x , x ) > 0 x Ω . The Berezin transform associated to μ is the integral...

Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel

David Bekolle (1984)

Annales de l'institut Fourier

Nous répondons à une conjecture de R. Coifman et R. Rochberg : dans le complexifié du cône sphérique de R n + 1 , le dual de la classe de Bergman A 1 s’obtient comme projection de Bergman de L et coïncide avec la classe de Bloch des fonctions holomorphes. Nous examinons également le cas d’un produit de domaines.

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

Currently displaying 141 – 160 of 362