Displaying 561 – 580 of 681

Showing per page

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε 0 is examined.

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε → 0 is examined. ...

Analysis and Numerical Approximation of an Electro-elastic Frictional Contact Problem

El. Essoufi, El. Benkhira, R. Fakhar (2010)

Mathematical Modelling of Natural Phenomena

We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, and error...

Analysis of a contact adhesive problem with normal compliance and nonlocal friction

Arezki Touzaline (2012)

Annales Polonici Mathematici

The paper deals with the problem of a quasistatic frictional contact between a nonlinear elastic body and a deformable foundation. The contact is modelled by a normal compliance condition in such a way that the penetration is restricted with a unilateral constraint and associated to the nonlocal friction law with adhesion. The evolution of the bonding field is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove an existence...

Analysis of a discrete model for the contact problem between a membrane and an elastic obstacle

Aldo Maceri, Franco Maceri (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro viene risolto il problema del contatto tra una membrana ed un suolo od ostacolo elastico con una approssimazione lineare a tratti della soluzione. Sono date alcune formulazioni equivalenti del problema discreto e se ne discutono le corrispondenti proprietà computazionali.

Analysis of a frictionless contact problem for elastic bodies

S. Drabla, M. Sofonea, B. Teniou (1998)

Annales Polonici Mathematici

This paper deals with a nonlinear problem modelling the contact between an elastic body and a rigid foundation. The elastic constitutive law is assumed to be nonlinear and the contact is modelled by the well-known Signorini conditions. Two weak formulations of the model are presented and existence and uniqueness results are established using classical arguments of elliptic variational inequalities. Some equivalence results are presented and a strong convergence result involving a penalized problem...

Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal

Eric Bonnetier, Richard S. Falk, Michael A. Grinfeld (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The equilibrium configurations of a one-dimensional variational model that combines terms expressing the bulk energy of a deformable crystal and its surface energy are studied. After elimination of the displacement, the problem reduces to the minimization of a nonconvex and nonlocal functional of a single function, the thickness. Depending on a parameter which strengthens one of the terms comprising the energy at the expense of the other, it is shown that this functional may have a stable absolute...

Analysis of a time optimal control problem related to the management of a bioreactor

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of,...

Analysis of a time optimal control problem related to the management of a bioreactor***

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of,...

Analysis of a viscoelastic antiplane contact problem with slip-dependent friction

Thierry-Vincent Hoarau-Mantel, Andaluzia Matei (2002)

International Journal of Applied Mathematics and Computer Science

We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational inequalities....

Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems

Jozef Kačur, Alexander Ženíšek (1986)

Aplikace matematiky

The authors study problems of existence and uniqueness of solutions of various variational formulations of the coupled problem of dynamical thermoelasticity and of the convergence of approximate solutions of these problems. First, the semidiscrete approximate solutions is defined, which is obtained by time discretization of the original variational problem by Euler’s backward formula. Under certain smoothness assumptions on the date authors prove existence and uniqueness of the solution and establish...

Analysis of Hamilton-Jacobi-Bellman equations arising in stochastic singular control

Ryan Hynd (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study the partial differential equation         max{Lu − f, H(Du)} = 0 where u is the unknown function, L is a second-order elliptic operator, f is a given smooth function and H is a convex function. This is a model equation for Hamilton-Jacobi-Bellman equations arising in stochastic singular control. We establish the existence of a unique viscosity solution of the Dirichlet problem that has a Hölder continuous gradient. We also show that if H is uniformly convex, the gradient of this solution...

Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market

René Henrion, Jiří Outrata, Thomas Surowiec (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order to justify using M-stationarity conditions. Third,...

Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market∗

René Henrion, Jiří Outrata, Thomas Surowiec (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order...

Currently displaying 561 – 580 of 681