Displaying 961 – 980 of 4417

Showing per page

Convergence of minimax structures and continuation of critical points for singularly perturbed systems

Benedetta Noris, Hugo Tavares, Susanna Terracini, Gianmaria Verzini (2012)

Journal of the European Mathematical Society

In the recent literature, the phenomenon of phase separation for binary mixtures of Bose–Einstein condensates can be understood, from a mathematical point of view, as governed by the asymptotic limit of the stationary Gross–Pitaevskii system - Δ u + u 3 + β u v 2 = λ u , - Δ v + v 3 + β u 2 v = μ v , u , v H 0 1 ( Ω ) , u , v > 0 , as the interspecies scattering length β goes to + . For this system we consider the associated energy functionals J β , β ( 0 , + ) , with L 2 -mass constraints, which limit J (as β + ) is strongly irregular. For such functionals, we construct multiple critical points via a common...

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...

Convergence of optimal solutions in control problems for hyperbolic equations

S. Migórski (1995)

Annales Polonici Mathematici

A sequence of optimal control problems for systems governed by linear hyperbolic equations with the nonhomogeneous Neumann boundary conditions is considered. The integral cost functionals and the differential operators in the equations depend on the parameter k. We deal with the limit behaviour, as k → ∞, of the sequence of optimal solutions using the notions of G- and Γ-convergences. The conditions under which this sequence converges to an optimal solution for the limit problem are given.

Convergence of optimal strategies in a discrete time market with finite horizon

Rafał Kucharski (2006)

Applicationes Mathematicae

A discrete-time financial market model with finite time horizon is considered, together with a sequence of investors whose preferences are described by a convergent sequence of strictly increasing and strictly concave utility functions. Existence of unique optimal consumption-investment strategies as well as their convergence to the limit strategy is shown.

Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ

Christian Grossmann, Diethard Klatte, Bernd Kummer (2004)

Kybernetika

This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.

Convergence of the Lagrange-Newton method for optimal control problems

Kazimierz Malanowski (2004)

International Journal of Applied Mathematics and Computer Science

Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case,...

Convergence of the time-discretized monotonic schemes

Julien Salomon (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of...

Convergence rates of symplectic Pontryagin approximations in optimal control theory

Mattias Sandberg, Anders Szepessy (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Many inverse problems for differential equations can be formulated as optimal control problems. It is well known that inverse problems often need to be regularized to obtain good approximations. This work presents a systematic method to regularize and to establish error estimates for approximations to some control problems in high dimension, based on symplectic approximation of the Hamiltonian system for the control problem. In particular the work derives error estimates and constructs regularizations...

Currently displaying 961 – 980 of 4417