The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 4417

Showing per page

A generalized dual maximizer for the Monge–Kantorovich transport problem

Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)

ESAIM: Probability and Statistics

The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y →  [0,∞]  is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.

A generalized dual maximizer for the Monge–Kantorovich transport problem∗

Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)

ESAIM: Probability and Statistics

The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y →  [0,∞]  is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic...

A geometric lower bound on Grad’s number

Alessio Figalli (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this note we provide a new geometric lower bound on the so-called Grad’s number of a domain Ø in terms of how far Ø is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.

A geometric lower bound on Grad's number

Alessio Figalli (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this note we provide a new geometric lower bound on the so-called Grad's number of a domain Ω in terms of how far Ω is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.

A Global Stochastic Optimization Method for Large Scale Problems

W. El Alem, A. El Hami, R. Ellaia (2010)

Mathematical Modelling of Natural Phenomena

In this paper, a new hybrid simulated annealing algorithm for constrained global optimization is proposed. We have developed a stochastic algorithm called ASAPSPSA that uses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to the basic simulated annealing algorithm (SA) that gives the region containing the global solution of an objective function. In addition, Simultaneous Perturbation Stochastic Approximation (SPSA)...

A Haar-Rado type theorem for minimizers in Sobolev spaces

Carlo Mariconda, Giulia Treu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Let be a minimum for where f is convex, is convex for a.e. x. We prove that u shares the same modulus of continuity of ϕ whenever Ω is sufficiently regular, the right derivative of g satisfies a suitable monotonicity assumption and the following inequality holds This result generalizes the classical Haar-Rado theorem for Lipschitz functions.

Currently displaying 101 – 120 of 4417