Displaying 261 – 280 of 397

Showing per page

Optimal control of quasilinear elliptic equations with non differentiable coefficients at the origin.

Eduardo Casas, Luis Alberto Fernández (1991)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we study some optimal control problems of systems governed by quasilinear elliptic equations in divergence form with non differentiable coefficients at the origin. We prove existence of solutions and derive the optimality conditions by considering a perturbation of the differential operator coefficients that removes the singularity at the origin. Regularity of optimal controls is also deduced.

Optimal Control of Semilinear Parabolic Equations with State-Constraints of Bottleneck Type

Maïtine Bergounioux, Fredi Tröltzsch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider optimal distributed and boundary control problems for semilinear parabolic equations, where pointwise constraints on the control and pointwise mixed control-state constraints of bottleneck type are given. Our main result states the existence of regular Lagrange multipliers for the state-constraints. Under natural assumptions, we are able to show the existence of bounded and measurable Lagrange multipliers. The method is based on results from the theory of continuous linear programming...

Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows

Max D. Gunzburger, O. Yu. Imanuvilov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem from...

Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions

Karl Kunisch, Marcus Wagner (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.

Optimal control of the Primitive Equations of the ocean with Lagrangian observations

Maëlle Nodet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for the three-dimensional non-linear Primitive Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an optimal control problem which consists in minimizing a cost function representing the least square error between Lagrangian observations and their model counterpart, plus a regularization term. This paper proves...

Optimal control problem and maximum principle for fractional order cooperative systems

G. M. Bahaa (2019)

Kybernetika

In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal...

Optimal design problems for a dynamic viscoelastic plate. I. Short memory material

Igor Bock (1995)

Applications of Mathematics

We deal with an optimal control problem with respect to a variable thickness for a dynamic viscoelastic plate with velocity constraints. The state problem has the form of a pseudohyperbolic variational inequality. The existence and uniqueness theorem for the state problem and the existence of an optimal thickness function are proved.

Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion

Yuncheng You (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...

Optimal LQ-feedback control for a class of first-order hyperbolic distributed parameter systems

Ilyasse Aksikas, Joseph J. Winkin, Denis Dochain (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential...

Optimal Screening in Structured SIR Epidemics

B. Ainseba, M. Iannelli (2012)

Mathematical Modelling of Natural Phenomena

We present a model for describing the spread of an infectious disease with public screening measures to control the spread. We want to address the problem of determining an optimal screening strategy for a disease characterized by appreciable duration of the infectiveness period and by variability of the transmission risk. The specific disease we have in mind is the HIV infection. However the model will apply to a disease for which class-age structure...

Optimal snapshot location for computing POD basis functions

Karl Kunisch, Stefan Volkwein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The construction of reduced order models for dynamical systems using proper orthogonal decomposition (POD) is based on the information contained in so-called snapshots. These provide the spatial distribution of the dynamical system at discrete time instances. This work is devoted to optimizing the choice of these time instances in such a manner that the error between the POD-solution and the trajectory of the dynamical system is minimized. First and second order optimality systems are given. Numerical...

Optimization and identification of nonlinear uncertain systems

Jong Yeoul Park, Yong Han Kang, Il Hyo Jung (2003)

Czechoslovak Mathematical Journal

In this paper we consider the optimal control of both operators and parameters for uncertain systems. For the optimal control and identification problem, we show existence of an optimal solution and present necessary conditions of optimality.

Optimization approaches to some problems of building design

Jiří Vala, Petra Jarošová (2018)

Applications of Mathematics

Advanced building design is a rather new interdisciplinary research branch, combining knowledge from physics, engineering, art and social science; its support from both theoretical and computational mathematics is needed. This paper shows an example of such collaboration, introducing a model problem of optimal heating in a low-energy house. Since all particular function values, needed for optimization are obtained as numerical solutions of an initial and boundary value problem for a sparse system...

Oscillations and concentrations in sequences of gradients

Martin Kružík, Agnieszka Kałamajska (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We use DiPerna’s and Majda’s generalization of Young measures to describe oscillations and concentrations in sequences of gradients, { u k } , bounded in L p ( Ø ; m × n ) if p > 1 and Ω n is a bounded domain with the extension property in W 1 , p . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required and links with lower semicontinuity results...

Currently displaying 261 – 280 of 397