The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish some new results about the Γ-limit, with respect to the L1-topology, of two different (but related) phase-field approximations ℰ ε ε , x10ff65; ℰ ε ε of the so-called Euler’s Elastica Bending Energy for curves in the plane. In particular we characterize theΓ-limit as ε → 0 of ℰε, and show that in general the Γ-limits of ℰεand x10ff65; ℰ ε do not coincide on indicator functions of sets with non-smooth boundary. More precisely we show that the domain of theΓ-limit of x10ff65;...
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...
We introduce the space of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for , which leads to a compactness result for the space of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational...
We investigate the minima of functionals of the formwhere is strictly convex. The admissible functions are not necessarily convex and satisfy on , , , is a fixed function on . We show that the minimum is attained by , the convex envelope of .
We investigate the minima of functionals of the form
where g is strictly convex. The admissible functions are not necessarily
convex and satisfy on [a,b], u(a)=f(a), u(b)=f(b), f is a fixed function on [a,b].
We show that the minimum is attained by , the convex envelope of f.
We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace by an arbitrary compact set of conformal matrices, bounded away from and invariant under , and rigid motions by Möbius transformations.
After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.
We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous...
We introduce a new transport distance between probability measures on that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...
We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations.
We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem.
The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the -limit of this
energy (suitably rescaled),...
A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...
Currently displaying 1 –
20 of
22