Displaying 361 – 380 of 498

Showing per page

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical schemes for a three component Cahn-Hilliard model

Franck Boyer, Sebastian Minjeaud (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by...

Numerical schemes for a three component Cahn-Hilliard model

Franck Boyer, Sebastian Minjeaud (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by...

Numerical schemes for multivalued backward stochastic differential systems

Lucian Maticiuc, Eduard Rotenstein (2012)

Open Mathematics

We define approximation schemes for generalized backward stochastic differential systems, considered in the Markovian framework. More precisely, we propose a mixed approximation scheme for the following backward stochastic variational inequality: d Y t + F ( t , X t , Y t , Z t ) d t φ ( Y t ) d t + Z t d W t , where ∂φ is the subdifferential operator of a convex lower semicontinuous function φ and (X t)t∈[0;T] is the unique solution of a forward stochastic differential equation. We use an Euler type scheme for the system of decoupled forward-backward variational...

Numerical simulation of a point-source initiated flame ball with heat losses

Jacques Audounet, Jean-Michel Roquejoffre, Hélène Rouzaud (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

Numerical simulation of a point-source initiated flame ball with heat losses

Jacques Audounet, Jean-Michel Roquejoffre, Hélène Rouzaud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

Numerical simulation of a pulsatile flow through a flexible channel

Cornel Marius Murea (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An algorithm for approximation of an unsteady fluid-structure interaction problem is proposed. The fluid is governed by the Navier-Stokes equations with boundary conditions on pressure, while for the structure a particular plate model is used. The algorithm is based on the modal decomposition and the Newmark Method for the structure and on the Arbitrary lagrangian Eulerian coordinates and the Finite Element Method for the fluid. In this paper, the continuity of the stresses at the interface was...

Numerical simulation of a pulsatile flow through a flexible channel

Cornel Marius Murea (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

An algorithm for approximation of an unsteady fluid-structure interaction problem is proposed. The fluid is governed by the Navier-Stokes equations with boundary conditions on pressure, while for the structure a particular plate model is used. The algorithm is based on the modal decomposition and the Newmark Method for the structure and on the Arbitrary Lagrangian Eulerian coordinates and the Finite Element Method for the fluid. In this paper, the continuity of the stresses at the interface...

Numerical simulation of blood flows through a porous interface

Miguel A. Fernández, Jean-Frédéric Gerbeau, Vincent Martin (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a model for a medical device, called a stent, designed for the treatment of cerebral aneurysms. The stent consists of a grid, immersed in the blood flow and located at the inlet of the aneurysm. It aims at promoting a clot within the aneurysm. The blood flow is modelled by the incompressible Navier-Stokes equations and the stent by a dissipative surface term. We propose a stabilized finite element method for this model and we analyse its convergence in the case of the Stokes...

Numerical simulation of chemotactic bacteria aggregation via mixed finite elements

Americo Marrocco (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution algorithm...

Numerical simulation of chemotactic bacteria aggregation via mixed finite elements

Americo Marrocco (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution...

Numerical simulation of free-surface flows with surface tension

Sváček, Petr (2015)

Programs and Algorithms of Numerical Mathematics

This paper focuses on the mathematical modelling and the numerical approximation of the flow of two immiscible incompressible fluids. The surface tension effects are taken into account and mixed boundary conditions are used. The weak formulation is introduced, discretized in time, and the finite element method is applied. The free surface motion is treated with the aid of the level set method. The numerical results are shown.

Numerical simulation of generalized Newtonian fluids flow in bypass geometry

Keslerová, Radka, Řezníček, Hynek, Padělek, Tomáš (2019)

Programs and Algorithms of Numerical Mathematics

The aim of this work is to present numerical results of non-Newtonian fluid flow in a model of bypass. Different angle of a connection between narrowed channel and the bypass graft is considered. Several rheology viscosity models were used for the non-Newtonian fluid, namely the modified Cross model and the Carreau-Yasuda model. The results of non-Newtonian fluid flow are compared to the results of Newtonian fluid. The fundamental system of equations is the generalized system of Navier-Stokes equations...

Numerical simulation of gluey particles

Aline Lefebvre (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...

Numerical simulation of gluey particles

Aline Lefebvre (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...

Numerical simulation of surface acoustic wave actuated cell sorting

Thomas Franke, Ronald Hoppe, Christopher Linsenmann, Kidist Zeleke (2013)

Open Mathematics

We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer...

Numerical simulation of the motion of a three-dimensional glacier

Marco Picasso, Jacques Rappaz, Adrian Reist (2008)

Annales mathématiques Blaise Pascal

The motion of a three-dimensional glacier is considered. Ice is modeled as an incompressible non-Newtonian fluid. At each time step, given the shape of the glacier, a nonlinear elliptic system has to be solved in order to obtain the two components of the horizontal velocity field. Then, the shape of the glacier is updated by solving a transport equation. Finite element techniques are used to compute the velocity field and to solve the transport equation. Numerical results are compared to experiments...

Currently displaying 361 – 380 of 498