Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces.
In this paper, two algorithms are proposed to solve systems of algebraic equations generated by a discretization procedure of the weak formulation of boundary value problems for systems of nonlinear elliptic equations. The first algorithm, Newton-CG-MG, is suitable for systems with gradient mappings, while the second, Newton-CE-MG, can be applied to more general systems. Convergence theorems are proved and application to the semiconductor device modelling is described.
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.
The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations to describe the flow of a viscous, incompressible, and electrically conducting fluid in a Lipschitz domain . We verify convergence of iterates of different coupling and decoupling fully discrete schemes towards weak solutions for vanishing discretization parameters. Optimal first order of convergence is shown in the presence of strong solutions for a splitting scheme which decouples the computation of velocity...
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
This paper reviews popular acceleration techniques to converge the non-linear self-consistent field equations appearing in quantum chemistry calculations with localized basis sets. The different methodologies, as well as their advantages and limitations are discussed within the same framework. Several illustrative examples of calculations are presented. This paper attempts to describe recent achievements and remaining challenges in this field.
The numerical minimization of the functional , is addressed. The function is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that can be equivalently minimized on the convex set and then regularized with a sequence , of stricdy convex functionals defined on . Then both and , can be discretized by continuous linear finite elements. The convexity property of the functionals on is useful in the numerical minimization...
We address the numerical minimization of the functional , for . We note that can be equivalently minimized on the larger, convex, set and that, on that space, may be regularized with a sequence of regular functionals. Then both and can be discretized by continuous linear finite elements. The convexity of the functionals in is useful for the numerical minimization of . We prove the -convergence of the discrete functionals to and present a few numerical examples.
The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator, and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and conjectures about this topic; in particular, the existence of a convex domain...
Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of...
This paper deals with the problem of risk measurement under mixed operation. For this purpose, we divide the basic risks into several groups based on the actual situation. First, we calculate the bounds for the subsum of every group of basic risks, then we obtain the bounds for the total sum of all the basic risks. For the dependency relationships between the basic risks in every group and all of the subsums, we give different copulas to describe them. The bounds for the aggregated risk under mixed...
We explicit the link between the computer arithmetic problem of providing correctly rounded algebraic functions and some diophantine approximation issues. This allows to get bounds on the accuracy with which intermediate calculations must be performed to correctly round these functions.