Displaying 161 – 180 of 1948

Showing per page

A direct solver for finite element matrices requiring O ( N log N ) memory places

Vejchodský, Tomáš (2013)

Applications of Mathematics 2013

We present a method that in certain sense stores the inverse of the stiffness matrix in O ( N log N ) memory places, where N is the number of degrees of freedom and hence the matrix size. The setup of this storage format requires O ( N 3 / 2 ) arithmetic operations. However, once the setup is done, the multiplication of the inverse matrix and a vector can be performed with O ( N log N ) operations. This approach applies to the first order finite element discretization of linear elliptic and parabolic problems in triangular domains,...

A discrepancy principle for Tikhonov regularization with approximately specified data

M. Thamban Nair, Eberhard Schock (1998)

Annales Polonici Mathematici

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation ( T * T + α I ) x α δ = T * y δ , | y - y δ | δ , in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and T * y δ are approximated by Aₙ and z δ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable...

A discrete contact model for crowd motion

Bertrand Maury, Juliette Venel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here the...

A discrete contact model for crowd motion

Bertrand Maury, Juliette Venel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here...

A discrete kinetic approximation for the incompressible Navier-Stokes equations

Maria Francesca Carfora, Roberto Natalini (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.

A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation

J. Haslinger, R. Kučera, T. Sassi (2009)

Mathematical Modelling of Natural Phenomena

The paper deals with an iterative method for numerical solving frictionless contact problems for two elastic bodies. Each iterative step consists of a Dirichlet problem for the one body, a contact problem for the other one and two Neumann problems to coordinate contact stresses. Convergence is proved by the Banach fixed point theorem in both continuous and discrete case. Numerical experiments indicate scalability of the algorithm for some choices of the relaxation parameter.

A domain decomposition analysis for a two-scale linear transport problem

François Golse, Shi Jin, C. David Levermore (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin, C. David Levermore (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

Currently displaying 161 – 180 of 1948